Suppr超能文献

基于术前 CT 影像的深度学习影像组学模型预测高危肺结节的建立与验证

Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography.

机构信息

Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (G.Y., K.L., C.Z., Y.L.).

Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (G.W., F.Y.).

出版信息

Acad Radiol. 2024 Apr;31(4):1686-1697. doi: 10.1016/j.acra.2023.08.040. Epub 2023 Oct 5.

Abstract

RATIONALE AND OBJECTIVES

To accurately identify the high-risk pathological factors of pulmonary nodules, our study constructed a model combined with clinical features, radiomics features, and deep transfer learning features to predict high-risk pathological pulmonary nodules.

MATERIALS AND METHODS

The study cohort consisted of 469 cases of lung adenocarcinoma patients, divided into a training cohort (n = 400) and an external validation cohort (n = 69). We obtained computed tomography (CT) semantic features and clinical characteristics, as well as extracted radiomics and deep transfer learning (DTL) features from the CT images. Selected features were used for constructing prediction models using the logistic regression (LR) algorithm. The performance of the models was evaluated through metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis.

RESULTS

The clinical model achieved an AUC of 0.774 (95% CI: 0.728-0.821) in the training cohort and 0.762 (95% confidence interval [CI]: 0.650-0.873) in the external validation cohort. The radiomics model demonstrated an AUC of 0.847 (95% CI: 0.810-0.884) in the training cohort and 0.800 (95% CI: 0.693-0.907) in the external validation cohort. The radiomics-DTL (Rad-DTL) model showed an AUC of 0.871 (95% CI: 0.838-0.905) in the training cohort and 0.806 (95% CI: 0.698-0.914) in the external validation cohort. The proposed combined model yielded AUC values of 0.872 and 0.814 in the training and external validation cohorts, respectively. The combined model demonstrated superiority over both the clinical model and the Rad-DTL model. There were no statistically significant differences observed in the comparison between the combined model incorporating clinical features and the Rad-DTL model. Decision curve analysis (DCA) indicated that the models provided a net benefit in predicting high-risk pathologic pulmonary nodules.

CONCLUSION

Rad-DTL signature is a potential biomarker for predicting high-risk pathologic pulmonary nodules using preoperative CT, determining the appropriate surgical strategy, and guiding the extent of resection.

摘要

背景与目的

为了准确识别肺结节的高危病理因素,本研究构建了一个结合临床特征、放射组学特征和深度迁移学习特征的模型,以预测高危病理肺结节。

材料与方法

研究队列由 469 例肺腺癌患者组成,分为训练队列(n=400)和外部验证队列(n=69)。我们从 CT 图像中获取 CT 语义特征和临床特征,并提取放射组学和深度迁移学习(DTL)特征。使用逻辑回归(LR)算法选择特征构建预测模型。通过受试者工作特征曲线下面积(AUC)、敏感性、特异性、校准曲线和决策曲线分析评估模型性能。

结果

临床模型在训练队列中的 AUC 为 0.774(95%置信区间:0.728-0.821),在外部验证队列中的 AUC 为 0.762(95%置信区间:0.650-0.873)。放射组学模型在训练队列中的 AUC 为 0.847(95%置信区间:0.810-0.884),在外部验证队列中的 AUC 为 0.800(95%置信区间:0.693-0.907)。放射组学-DTL(Rad-DTL)模型在训练队列中的 AUC 为 0.871(95%置信区间:0.838-0.905),在外部验证队列中的 AUC 为 0.806(95%置信区间:0.698-0.914)。所提出的联合模型在训练和外部验证队列中的 AUC 值分别为 0.872 和 0.814。联合模型在预测高危病理肺结节方面优于临床模型和 Rad-DTL 模型。在将临床特征与 Rad-DTL 模型相结合的联合模型与 Rad-DTL 模型的比较中,没有观察到统计学上的显著差异。决策曲线分析(DCA)表明,这些模型在预测高危病理肺结节方面提供了净收益。

结论

术前 CT 中 Rad-DTL 特征可能是预测高危病理肺结节的潜在生物标志物,有助于确定适当的手术策略,并指导切除范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验