Diepenbroek Charlene, Rijnsburger Merel, van Irsen Astrid A S, Eggels Leslie, Kisner Alexandre, Foppen Ewout, Unmehopa Unga A, Berland Chloé, Dólleman Sophie, Hardonk Marene, Cruciani-Guglielmacci Céline, Faust Rudolf P, Wenning Rick, Maya-Monteiro Clarissa M, Kalsbeek Andries, Aponte Yeka, Luquet Serge, Serlie Mireille J M, la Fleur Susanne E
Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
Metabolism. 2024 Jan;150:155696. doi: 10.1016/j.metabol.2023.155696. Epub 2023 Oct 5.
Growing evidence demonstrates the role of the striatal dopamine system in the regulation of glucose metabolism. Treatment with dopamine antagonists is associated with insulin resistance and hyperglycemia, while dopamine agonists are used in treatment of type 2 diabetes. The mechanism underlying striatal dopamine effects in glucose metabolism, however is not fully understood. Here, we provide mechanistic insights into the role of nucleus accumbens shell (sNAc) dopaminergic signaling in systemic glucose metabolism.
Endogenous glucose production (EGP), blood glucose and mRNA expression in the lateral hypothalamic area (LHA) in male Wistar rats were measured following infusion of vanoxerine (VNX, dopamine reuptake inhibitor) in the sNAc. Thereafter, we analyzed projections from sNAc Drd1-expressing neurons to LHA using D1-Cre male Long-Evans rats, Cre-dependent viral tracers and fluorescence immunohistochemistry. Brain slice electrophysiology in adult mice was used to study spontaneous excitatory postsynaptic currents of sNAc Drd1-expressing neurons following VNX application. Finally, we assessed whether GABAergic LHA activity and hepatic vagal innervation were required for the effect of sNAc-VNX on glucose metabolism by combining infusion of sNAc-VNX with LHA-bicuculline, performing vagal recordings and combining infusion of sNAc-VNX with hepatic vagal denervation.
VNX infusion in the sNAc strongly decreased endogenous glucose production, prevented glucose increases over time, reduced Slc17A6 and Hcrt mRNA in LHA, and increased vagal activity. Furthermore, sNAc Drd1-expressing neurons increased spontaneous firing following VNX application, and viral tracing of sNAc Drd1-expressing neurons revealed direct projections to LHA with on average 67 % of orexin cells directly targeted by sNAc Drd1-expressing neurons. Importantly, the sNAc-VNX-induced effect on glucose metabolism was dependent on GABAergic signaling in the LHA and on intact hepatic vagal innervation.
We show that sNAc dopaminergic signaling modulates hepatic glucose metabolism through GABAergic inputs to glutamatergic LHA cells and hepatic vagal innervation. This demonstrates that striatal control of glucose metabolism involves a dopaminergic sNAc-LHA-liver axis and provides a potential explanation for the effects of dopamine agonists and antagonists on glucose metabolism.
越来越多的证据表明纹状体多巴胺系统在调节葡萄糖代谢中发挥作用。多巴胺拮抗剂治疗与胰岛素抵抗和高血糖相关,而多巴胺激动剂用于治疗2型糖尿病。然而,纹状体多巴胺对葡萄糖代谢影响的潜在机制尚未完全阐明。在此,我们深入探讨伏隔核壳部(sNAc)多巴胺能信号在全身葡萄糖代谢中的作用机制。
在雄性Wistar大鼠的sNAc中注入伐诺司林(VNX,多巴胺再摄取抑制剂)后,测量其内生葡萄糖生成(EGP)、血糖以及下丘脑外侧区(LHA)的mRNA表达。之后,我们使用D1-Cre雄性Long-Evans大鼠、Cre依赖的病毒示踪剂和荧光免疫组织化学技术,分析sNAc中表达Drd1的神经元向LHA的投射。利用成年小鼠脑片电生理学技术,研究注入VNX后sNAc中表达Drd1的神经元的自发性兴奋性突触后电流。最后,通过将sNAc-VNX注入与LHA-荷包牡丹碱联合应用、进行迷走神经记录以及将sNAc-VNX注入与肝迷走神经切断联合应用,评估sNAc-VNX对葡萄糖代谢的影响是否需要LHA的GABA能活性和肝迷走神经支配。
在sNAc中注入VNX可显著降低内生葡萄糖生成,防止血糖随时间升高,降低LHA中Slc17A6和Hcrt mRNA水平,并增加迷走神经活性。此外,注入VNX后,sNAc中表达Drd1的神经元的自发放电增加,对sNAc中表达Drd1的神经元进行病毒示踪显示其向LHA有直接投射,平均67%的食欲素细胞被sNAc中表达Drd1的神经元直接靶向。重要的是,sNAc-VNX对葡萄糖代谢的影响依赖于LHA中的GABA能信号和完整的肝迷走神经支配。
我们表明,sNAc多巴胺能信号通过向谷氨酸能LHA细胞的GABA能输入和肝迷走神经支配来调节肝脏葡萄糖代谢。这表明纹状体对葡萄糖代谢的控制涉及多巴胺能sNAc-LHA-肝脏轴,并为多巴胺激动剂和拮抗剂对葡萄糖代谢的影响提供了潜在解释。