State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
Département de chimie Université de Sherbrooke Sherbrooke, Québec, J1K 2R1, Canada.
Adv Mater. 2024 Feb;36(7):e2307210. doi: 10.1002/adma.202307210. Epub 2023 Dec 7.
The sophisticated and complex haptonastic movements in response to environmental-stimuli of living organisms have always fascinated scientists. However, how to fundamentally mimic the sophisticated hierarchical architectures of living organisms to provide the artificial counterparts with similar or even beyond-natural functions based on the underlying mechanism remains a major scientific challenge. Here, liquid crystal elastomer (LCE) artificial tendrils showing evolutionary biomimetic locomotion are developed following the structure-function principle that is used in nature to grow climbing plants. These elaborately designed tendril-like LCE actuators possess an asymmetric core-sheath architecture which shows a higher-to-lower transition in the degree of LC orientation from the sheath-to-core layer across the semi-ellipse cross-section. Upon heating and cooling, the LCE artificial tendril can undergo reversible tendril-like shape-morphing behaviors, such as helical coiling/winding, and perversion. The fundamental mechanism of the helical shape-morphing of the artificial tendril is revealed by using theoretical models and finite element simulations. Besides, the incorporation of metal-ligand coordination into the LCE network provides the artificial tendril with reconfigurable shape-morphing performances such as helical transitions and rotational deformations. Finally, the abilities of helical and rotational deformations are integrated into a new reprogrammed flagellum-like architecture to perform evolutionary locomotion mimicking the haptonastic movements of the natural flagellum.
生物体对环境刺激的复杂而精细的触感触运动一直令科学家着迷。然而,如何从根本上模仿生物体复杂的层次结构,基于其内在机制为人工结构提供类似甚至超越自然的功能,仍然是一个重大的科学挑战。在这里,受自然界中攀缘植物的结构-功能原理的启发,设计并制备了具有进化仿生运动的液晶弹性体(LCE)人工卷须。这些精心设计的类卷须状 LCE 致动器具有不对称的核-鞘结构,在半椭圆形横截面上,从鞘层到芯层的液晶取向程度呈现出由高到低的转变。在加热和冷却过程中,LCE 人工卷须可以经历可逆的类卷须形状变形行为,如螺旋缠绕/缠绕和扭曲。通过使用理论模型和有限元模拟揭示了人工卷须螺旋形状变形的基本机制。此外,将金属-配体配位引入 LCE 网络中,为人工卷须提供了可重构的形状变形性能,如螺旋转变和旋转变形。最后,将螺旋和旋转变形的能力集成到一个新的可重新编程的鞭毛状结构中,以执行进化运动,模仿自然鞭毛的触感触运动。