Suppr超能文献

螺旋结构模拟手性豆荚的开启和卷须的缠绕。

Helical Structures Mimicking Chiral Seedpod Opening and Tendril Coiling.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Sensors (Basel). 2018 Sep 6;18(9):2973. doi: 10.3390/s18092973.

Abstract

Helical structures are ubiquitous in natural and engineered systems across multiple length scales. Examples include DNA molecules, plants' tendrils, sea snails' shells, and spiral nanoribbons. Although this symmetry-breaking shape has shown excellent performance in elastic springs or propulsion generation in a low-Reynolds-number environment, a general principle to produce a helical structure with programmable geometry regardless of length scales is still in demand. In recent years, inspired by the chiral opening of 's seedpod and the coiling of plant's tendril, researchers have made significant breakthroughs in synthesizing state-of-the-art 3D helical structures through creating intrinsic curvatures in 2D rod-like or ribbon-like precursors. The intrinsic curvature results from the differential response to a variety of external stimuli of functional materials, such as hydrogels, liquid crystal elastomers, and shape memory polymers. In this review, we give a brief overview of the shape transformation mechanisms of these two plant's structures and then review recent progress in the fabrication of biomimetic helical structures that are categorized by the stimuli-responsive materials involved. By providing this survey on important recent advances along with our perspectives, we hope to solicit new inspirations and insights on the development and fabrication of helical structures, as well as the future development of interdisciplinary research at the interface of physics, engineering, and biology.

摘要

螺旋结构在多个长度尺度上普遍存在于自然和工程系统中。例如 DNA 分子、植物的卷须、海蜗牛的壳和螺旋纳米带。尽管这种打破对称的形状在低雷诺数环境下的弹性弹簧或推进产生中表现出了优异的性能,但仍需要一种通用的原则来制造具有可编程几何形状的螺旋结构,而不受长度尺度的限制。近年来,受“s 种子荚的手性开口和植物卷须的卷曲”的启发,研究人员通过在 2D 棒状或带状前体中创建固有曲率,在合成最先进的 3D 螺旋结构方面取得了重大突破。固有曲率源于对各种外部刺激的功能材料的不同响应,例如水凝胶、液晶弹性体和形状记忆聚合物。在这篇综述中,我们简要概述了这两种植物结构的形状变换机制,然后回顾了基于所涉及的响应性材料对仿生螺旋结构制造的最新进展。通过提供对重要最新进展的调查以及我们的观点,我们希望为螺旋结构的开发和制造以及物理学、工程学和生物学界面的跨学科研究的未来发展征求新的灵感和见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ae/6164363/7078cc864312/sensors-18-02973-g001.jpg

相似文献

1
Helical Structures Mimicking Chiral Seedpod Opening and Tendril Coiling.
Sensors (Basel). 2018 Sep 6;18(9):2973. doi: 10.3390/s18092973.
3
Preparation of biomimetic photoresponsive polymer springs.
Nat Protoc. 2016 Oct;11(10):1788-97. doi: 10.1038/nprot.2016.087. Epub 2016 Sep 1.
4
Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
Acc Chem Res. 2017 Feb 21;50(2):161-169. doi: 10.1021/acs.accounts.6b00570. Epub 2017 Feb 9.
5
A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors.
ACS Nano. 2018 Apr 24;12(4):3898-3907. doi: 10.1021/acsnano.8b01372. Epub 2018 Mar 29.
6
High-Power Actuation from Molecular Photoswitches in Enantiomerically Paired Soft Springs.
Angew Chem Int Ed Engl. 2017 Mar 13;56(12):3261-3265. doi: 10.1002/anie.201611325. Epub 2017 Feb 9.
7
Smart Actuators and Adhesives for Reconfigurable Matter.
Acc Chem Res. 2017 Apr 18;50(4):691-702. doi: 10.1021/acs.accounts.6b00612. Epub 2017 Mar 6.
8
Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges.
Molecules. 2020 Sep 16;25(18):4246. doi: 10.3390/molecules25184246.
9
Materials for Smart Soft Actuator Systems.
Chem Rev. 2022 Jan 12;122(1):1349-1415. doi: 10.1021/acs.chemrev.1c00453. Epub 2021 Dec 27.
10
A FEM-Experimental Approach for the Development of a Conceptual Linear Actuator Based on Tendril's Free Coiling.
Appl Bionics Biomech. 2017;2017:6450949. doi: 10.1155/2017/6450949. Epub 2017 Jul 25.

引用本文的文献

1
A mathematical model for the auxetic response of liquid crystal elastomers.
Philos Trans A Math Phys Eng Sci. 2022 Oct 17;380(2234):20210326. doi: 10.1098/rsta.2021.0326. Epub 2022 Aug 29.
2
Nematic liquid crystalline elastomers are aeolotropic materials.
Proc Math Phys Eng Sci. 2021 Sep;477(2253):20210259. doi: 10.1098/rspa.2021.0259. Epub 2021 Sep 8.
3
Bioinspired Self-Shaping Clay Composites for Sustainable Development.
Biomimetics (Basel). 2022 Jan 10;7(1):13. doi: 10.3390/biomimetics7010013.
4
Intelligent Shape-Morphing Micromachines.
Research (Wash D C). 2021 May 12;2021:9806463. doi: 10.34133/2021/9806463. eCollection 2021.
5
Pneumatic Coiling Actuator Inspired by the Awns of .
Front Robot AI. 2020 Feb 18;7:17. doi: 10.3389/frobt.2020.00017. eCollection 2020.
6
Performance of molecular crystals in conversion of light to mechanical work.
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2020604118.
7
A pseudo-anelastic model for stress softening in liquid crystal elastomers.
Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200558. doi: 10.1098/rspa.2020.0558. Epub 2020 Nov 4.

本文引用的文献

1
Stimuli-responsive polymer gels.
Soft Matter. 2008 May 14;4(6):1151-1157. doi: 10.1039/b714376a.
2
Programmed planar-to-helical shape transformations of composite hydrogels with bioinspired layered fibrous structures.
J Mater Chem B. 2016 Nov 28;4(44):7075-7079. doi: 10.1039/c6tb02178f. Epub 2016 Sep 26.
3
Controllable rotational inversion in nanostructures with dual chirality.
Nanoscale. 2018 Apr 5;10(14):6343-6348. doi: 10.1039/c7nr09035h.
4
Helical Locomotion in a Granular Medium.
Phys Rev Lett. 2017 Aug 11;119(6):068003. doi: 10.1103/PhysRevLett.119.068003. Epub 2017 Aug 10.
5
Shaping helical electrospun filaments: a review.
Soft Matter. 2017 Oct 4;13(38):6678-6688. doi: 10.1039/c7sm01280b.
6
Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties.
Chem Rev. 2017 Oct 25;117(20):12851-12892. doi: 10.1021/acs.chemrev.7b00168. Epub 2017 Jul 28.
7
Preparation of biomimetic hierarchically helical fiber actuators from carbon nanotubes.
Nat Protoc. 2017 Jul;12(7):1349-1358. doi: 10.1038/nprot.2017.038. Epub 2017 Jun 8.
8
Curvature-driven morphing of non-Euclidean shells.
Proc Math Phys Eng Sci. 2017 May;473(2201):20170087. doi: 10.1098/rspa.2017.0087. Epub 2017 May 31.
9
Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers.
Soft Matter. 2017 Jun 21;13(24):4349-4356. doi: 10.1039/c7sm00541e.
10
Spermatozoa as Functional Components of Robotic Microswimmers.
Adv Mater. 2017 Jun;29(24). doi: 10.1002/adma.201606301. Epub 2017 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验