Suppr超能文献

单向脑机接口:人工神经网络将自然图像编码为视觉皮层中的功能磁共振成像响应。

Unidirectional brain-computer interface: Artificial neural network encoding natural images to fMRI response in the visual cortex.

作者信息

Liang Ruixing, Zhang Xiangyu, Li Qiong, Wei Lai, Liu Hexin, Kumar Avisha, Leadingham Kelley M Kempski, Punnoose Joshua, Garcia Leibny Paola, Manbachi Amir

出版信息

ArXiv. 2023 Sep 26:arXiv:2309.15018v1.

Abstract

While significant advancements in artificial intelligence (AI) have catalyzed progress across various domains, its full potential in understanding visual perception remains underexplored. We propose an artificial neural network dubbed VISION, an acronym for "Visual Interface System for Imaging Output of Neural activity," to mimic the human brain and show how it can foster neuroscientific inquiries. Using visual and contextual inputs, this multimodal model predicts the brain's functional magnetic resonance imaging (fMRI) scan response to natural images. VISION successfully predicts human hemodynamic responses as fMRI voxel values to visual inputs with an accuracy exceeding state-of-the-art performance by 45%. We further probe the trained networks to reveal representational biases in different visual areas, generate experimentally testable hypotheses, and formulate an interpretable metric to associate these hypotheses with cortical functions. With both a model and evaluation metric, the cost and time burdens associated with designing and implementing functional analysis on the visual cortex could be reduced. Our work suggests that the evolution of computational models may shed light on our fundamental understanding of the visual cortex and provide a viable approach toward reliable brain-machine interfaces.

摘要

虽然人工智能(AI)的重大进展推动了各个领域的进步,但其在理解视觉感知方面的全部潜力仍未得到充分探索。我们提出了一种名为VISION的人工神经网络,它是“神经活动成像输出视觉接口系统”的首字母缩写,旨在模拟人类大脑,并展示它如何促进神经科学研究。利用视觉和上下文输入,这个多模态模型预测大脑对自然图像的功能磁共振成像(fMRI)扫描反应。VISION成功地将人类血液动力学反应预测为fMRI体素值对视觉输入的反应,准确率比现有最佳性能高出45%。我们进一步探究经过训练的网络,以揭示不同视觉区域的表征偏差,生成可通过实验验证的假设,并制定一个可解释的指标,将这些假设与皮层功能联系起来。有了模型和评估指标,与在视觉皮层上设计和实施功能分析相关的成本和时间负担可以减轻。我们的工作表明,计算模型的发展可能会阐明我们对视觉皮层的基本理解,并为可靠的脑机接口提供一种可行的方法。

相似文献

8
Encoding brain network response to free viewing of videos.对观看视频时大脑网络反应的编码。
Cogn Neurodyn. 2014 Oct;8(5):389-97. doi: 10.1007/s11571-014-9291-3. Epub 2014 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验