Suppr超能文献

利用深度神经网络从神经尖峰重建自然视觉场景。

Reconstruction of natural visual scenes from neural spikes with deep neural networks.

机构信息

National Engineering Laboratory for Video Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing, China; Peng Cheng Laboratory, Shenzhen, China.

National Engineering Laboratory for Video Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing, China; Peng Cheng Laboratory, Shenzhen, China.

出版信息

Neural Netw. 2020 May;125:19-30. doi: 10.1016/j.neunet.2020.01.033. Epub 2020 Feb 8.

Abstract

Neural coding is one of the central questions in systems neuroscience for understanding how the brain processes stimulus from the environment, moreover, it is also a cornerstone for designing algorithms of brain-machine interface, where decoding incoming stimulus is highly demanded for better performance of physical devices. Traditionally researchers have focused on functional magnetic resonance imaging (fMRI) data as the neural signals of interest for decoding visual scenes. However, our visual perception operates in a fast time scale of millisecond in terms of an event termed neural spike. There are few studies of decoding by using spikes. Here we fulfill this aim by developing a novel decoding framework based on deep neural networks, named spike-image decoder (SID), for reconstructing natural visual scenes, including static images and dynamic videos, from experimentally recorded spikes of a population of retinal ganglion cells. The SID is an end-to-end decoder with one end as neural spikes and the other end as images, which can be trained directly such that visual scenes are reconstructed from spikes in a highly accurate fashion. Our SID also outperforms on the reconstruction of visual stimulus compared to existing fMRI decoding models. In addition, with the aid of a spike encoder, we show that SID can be generalized to arbitrary visual scenes by using the image datasets of MNIST, CIFAR10, and CIFAR100. Furthermore, with a pre-trained SID, one can decode any dynamic videos to achieve real-time encoding and decoding of visual scenes by spikes. Altogether, our results shed new light on neuromorphic computing for artificial visual systems, such as event-based visual cameras and visual neuroprostheses.

摘要

神经编码是理解大脑如何处理来自环境的刺激的系统神经科学的核心问题之一,此外,它也是脑机接口算法设计的基石,在脑机接口中,解码传入的刺激对于提高物理设备的性能是非常需要的。传统上,研究人员主要关注功能磁共振成像 (fMRI) 数据作为解码视觉场景的神经信号。然而,我们的视觉感知在毫秒级的快速时间尺度上运作,以事件为单位的神经尖峰。使用尖峰进行解码的研究很少。在这里,我们通过开发一种基于深度神经网络的新型解码框架,即尖峰-图像解码器 (SID),来实现这一目标,该框架用于从视网膜神经节细胞群体的实验记录的尖峰中重建自然视觉场景,包括静态图像和动态视频。SID 是一个端到端解码器,一端是神经尖峰,另一端是图像,可以直接进行训练,以便以高精度的方式从尖峰中重建视觉场景。与现有的 fMRI 解码模型相比,我们的 SID 在视觉刺激的重建方面也表现出色。此外,在尖峰编码器的帮助下,我们表明 SID 可以通过使用 MNIST、CIFAR10 和 CIFAR100 的图像数据集来推广到任意视觉场景。此外,通过预训练的 SID,可以对任何动态视频进行解码,从而通过尖峰实现视觉场景的实时编码和解码。总之,我们的结果为人工视觉系统的神经形态计算提供了新的思路,例如基于事件的视觉相机和视觉神经假体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验