Suppr超能文献

家族性自主神经功能异常人源化小鼠模型中的转录组分析揭示了外周神经系统中组织特异性基因表达的破坏。

Transcriptome analysis in a humanized mouse model of familial dysautonomia reveals tissue-specific gene expression disruption in the peripheral nervous system.

作者信息

Harripaul Ricardo, Morini Elisabetta, Salani Monica, Logan Emily, Kirchner Emily, Bolduc Jessica, Chekuri Anil, Currall Benjamin, Yadav Rachita, Erdin Serkan, Talkowski Michael E, Gao Dadi, Slaugenhaupt Susan

出版信息

bioRxiv. 2023 Oct 11:2023.09.28.559870. doi: 10.1101/2023.09.28.559870.

Abstract

Familial dysautonomia (FD) is a rare recessive neurodevelopmental disease caused by a splice mutation in the Elongator acetyltransferase complex subunit 1 ( ) gene. This mutation results in a tissue-specific reduction of ELP1 protein, with the lowest levels in the central and peripheral nervous systems (CNS and PNS, respectively). FD patients exhibit complex neurological phenotypes due to the loss of sensory and autonomic neurons. Disease symptoms include decreased pain and temperature perception, impaired or absent myotatic reflexes, proprioceptive ataxia, and progressive retinal degeneration. While the involvement of the PNS in FD pathogenesis has been clearly recognized, the underlying mechanisms responsible for the preferential neuronal loss remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying FD by conducting a comprehensive transcriptome analysis of neuronal tissues from the phenotypic mouse model ; . This mouse recapitulates the same tissue-specific mis-splicing observed in patients while modeling many of the disease manifestations. Comparison of FD and control transcriptomes from dorsal root ganglion (DRG), trigeminal ganglion (TG), medulla (MED), cortex, and spinal cord (SC) showed significantly more differentially expressed genes (DEGs) in the PNS than the CNS. We then identified genes that were tightly co-expressed and functionally dependent on the level of full-length transcript. These genes, defined as dose-responsive genes, were combined with the DEGs to generate tissue-specific dysregulated FD signature genes and networks. Within the PNS networks, we observed direct connections between Elp1 and genes involved in tRNA synthesis and genes related to amine metabolism and synaptic signaling. Importantly, transcriptomic dysregulation in PNS tissues exhibited enrichment for neuronal subtype markers associated with peptidergic nociceptors and myelinated sensory neurons, which are known to be affected in FD. In summary, this study has identified critical tissue-specific gene networks underlying the etiology of FD and provides new insights into the molecular basis of the disease.

摘要

家族性自主神经功能障碍(FD)是一种罕见的隐性神经发育疾病,由延伸因子乙酰转移酶复合物亚基1(ELP1)基因的剪接突变引起。这种突变导致ELP1蛋白在组织中特异性减少,在中枢神经系统和外周神经系统(分别为CNS和PNS)中的水平最低。由于感觉神经元和自主神经元的丧失,FD患者表现出复杂的神经学表型。疾病症状包括疼痛和温度感知下降、肌伸张反射受损或缺失、本体感觉性共济失调以及进行性视网膜变性。虽然外周神经系统在FD发病机制中的作用已得到明确认识,但导致神经元优先丧失的潜在机制仍不清楚。在本研究中,我们旨在通过对来自表型小鼠模型的神经元组织进行全面的转录组分析来阐明FD的分子机制。该小鼠再现了患者中观察到的相同组织特异性错配剪接,同时模拟了许多疾病表现。比较背根神经节(DRG)、三叉神经节(TG)、延髓(MED)、皮质和脊髓(SC)的FD和对照转录组,结果显示外周神经系统中差异表达基因(DEG)明显多于中枢神经系统。然后,我们鉴定了与全长ELP1转录本水平紧密共表达且功能依赖的基因。这些基因被定义为剂量反应基因,与DEG结合以生成组织特异性失调的FD特征基因和网络。在外周神经系统网络中,我们观察到Elp1与参与tRNA合成的基因以及与胺代谢和突触信号相关的基因之间存在直接联系。重要的是,外周神经系统组织中的转录组失调表现为与肽能伤害感受器和有髓感觉神经元相关的神经元亚型标记物富集,已知这些在FD中会受到影响。总之,本研究确定了FD病因背后关键的组织特异性基因网络,并为该疾病的分子基础提供了新的见解。

相似文献

3
Development of an oral treatment that rescues gait ataxia and retinal degeneration in a phenotypic mouse model of familial dysautonomia.
Am J Hum Genet. 2023 Mar 2;110(3):531-547. doi: 10.1016/j.ajhg.2023.01.019. Epub 2023 Feb 20.
4
ELP1 Splicing Correction Reverses Proprioceptive Sensory Loss in Familial Dysautonomia.
Am J Hum Genet. 2019 Apr 4;104(4):638-650. doi: 10.1016/j.ajhg.2019.02.009. Epub 2019 Mar 21.
5
Developmental regulation of neuronal gene expression by Elongator complex protein 1 dosage.
J Genet Genomics. 2022 Jul;49(7):654-665. doi: 10.1016/j.jgg.2021.11.011. Epub 2021 Dec 9.
8
Sensory and autonomic deficits in a new humanized mouse model of familial dysautonomia.
Hum Mol Genet. 2016 Mar 15;25(6):1116-28. doi: 10.1093/hmg/ddv634. Epub 2016 Jan 13.
10
Elp1 is required for development of visceral sensory peripheral and central circuitry.
Dis Model Mech. 2022 May 1;15(5). doi: 10.1242/dmm.049274. Epub 2022 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验