Suppr超能文献

使用综合生物信息学方法基于六种mRNA构建的风险特征预测儿童克罗恩病。

Predicting pediatric Crohn's disease based on six mRNA-constructed risk signature using comprehensive bioinformatic approaches.

作者信息

Zhan Yuanyuan, Jin Quan, Yousif Tagwa Yousif Elsayed, Soni Mukesh, Ren Yuping, Liu Shengxuan

机构信息

Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.

Department of Rehabilitation, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao 433099, Hubei, China.

出版信息

Open Life Sci. 2023 Oct 5;18(1):20220731. doi: 10.1515/biol-2022-0731. eCollection 2023.

Abstract

Crohn's disease (CD) is a recurrent, chronic inflammatory condition of the gastrointestinal tract which is a clinical subtype of inflammatory bowel disease for which timely and non-invasive diagnosis in children remains a challenge. A novel predictive risk signature for pediatric CD diagnosis was constructed from bioinformatics analysis of six mRNAs, adenomatosis polyposis downregulated 1 (APCDD1), complement component 1r, mitogen-activated protein kinase kinase kinase kinase 5 (MAP3K5), lysophosphatidylcholine acyltransferase 1, sphingomyelin synthase 1 and transmembrane protein 184B, and validated using samples. Statistical evaluation was performed by support vector machine learning, weighted gene co-expression network analysis, differentially expressed genes and pathological assessment. Hematoxylin-eosin staining and immunohistochemistry results showed that APCDD1 was highly expressed in pediatric CD tissues. Evaluation by decision curve analysis and area under the curve indicated good predictive efficacy. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis confirmed the involvement of immune and cytokine signaling pathways. A predictive risk signature for pediatric CD is presented which represents a non-invasive supplementary tool for pediatric CD diagnosis.

摘要

克罗恩病(CD)是一种复发性慢性胃肠道炎症性疾病,是炎症性肠病的一种临床亚型,对儿童进行及时且非侵入性的诊断仍然是一项挑战。通过对6种mRNA(腺瘤性息肉病下调基因1(APCDD1)、补体成分1r、丝裂原活化蛋白激酶激酶激酶激酶5(MAP3K5)、溶血磷脂酰胆碱酰基转移酶1、鞘磷脂合酶1和跨膜蛋白184B)进行生物信息学分析,构建了一种用于儿科克罗恩病诊断的新型预测风险特征,并使用样本进行了验证。通过支持向量机学习、加权基因共表达网络分析、差异表达基因和病理评估进行统计评估。苏木精-伊红染色和免疫组化结果显示,APCDD1在儿科克罗恩病组织中高表达。决策曲线分析和曲线下面积评估表明具有良好的预测效能。基因本体论、京都基因与基因组百科全书和基因集富集分析证实了免疫和细胞因子信号通路的参与。本文提出了一种用于儿科克罗恩病的预测风险特征,它是儿科克罗恩病诊断的一种非侵入性补充工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ec5/10557890/422a37e445c9/j_biol-2022-0731-ga001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验