Suppr超能文献

一种用于通过理论和推理对降水数据进行建模的新的阿尔法对数生成类。

A new alpha logarithmic-generated class to model precipitation data with theory and inference.

作者信息

Al Mutairi Aned

机构信息

Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

出版信息

Heliyon. 2023 Sep 2;9(9):e19561. doi: 10.1016/j.heliyon.2023.e19561. eCollection 2023 Sep.

Abstract

Precipitation, or rainfall, is a central feature of the weather cycle and plays a vital role in sustaining life on Earth. However, existing models such as the Poisson, exponential, normal, log-normal, generalized Pareto, gamma, generalized extreme value, lognormal, beta, Gumbel, Weibull, and Pearson type III distributions used for predicting precipitation are often inadequate for precisely representing the complex pattern of rainfall. This study proposes a novel and innovative approach to address these limitations through the new alpha logarithmic-generated (NAL-G) class of distributions. The study authors thoroughly examine the NAL-G class and a unique model, the NAL-Exponential (NAL-Exp) distribution, with a focus on analyzing mathematical properties such as moments, quantile function, entropy, order statistics, and more. Six recognized classical estimation methods are employed, and extensive simulations are conducted to determine the best one. The NAL-Exp distribution demonstrates its high adaptability and value through its superior performance in modeling four distinct rainfall data sets. The results show that the NAL-Exp distribution outperforms other commonly used distribution models, highlighting its potential as a valuable tool in hydrological modeling and analysis. The increased versatility and flexibility of this new approach hold great potential for enhancing the accuracy and reliability of future rainfall predictions.

摘要

降水,即降雨,是天气循环的核心特征,对维持地球上的生命起着至关重要的作用。然而,现有的用于预测降水的模型,如泊松分布、指数分布、正态分布、对数正态分布、广义帕累托分布、伽马分布、广义极值分布、对数正态分布、贝塔分布、耿贝尔分布、威布尔分布和皮尔逊III型分布,往往不足以精确地表示降雨的复杂模式。本研究提出了一种新颖的创新方法,通过新的α对数生成(NAL-G)类分布来解决这些局限性。研究作者深入研究了NAL-G类和一个独特的模型,即NAL-指数(NAL-Exp)分布,重点分析了矩、分位数函数、熵、顺序统计量等数学性质。采用了六种公认的经典估计方法,并进行了广泛的模拟以确定最佳方法。NAL-Exp分布通过在模拟四个不同降雨数据集时的卓越性能展示了其高适应性和价值。结果表明,NAL-Exp分布优于其他常用的分布模型,突出了其作为水文建模和分析中有价值工具的潜力。这种新方法增加的通用性和灵活性在提高未来降雨预测的准确性和可靠性方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388c/10558793/782702283b74/gr1.jpg

相似文献

7
Penalized likelihood approach for the four-parameter kappa distribution.四参数kappa分布的惩罚似然方法。
J Appl Stat. 2021 Jan 12;49(6):1559-1573. doi: 10.1080/02664763.2021.1871592. eCollection 2022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验