Suppr超能文献

土卫二潮汐耗散的起源与演化。

Origin and Evolution of Enceladus's Tidal Dissipation.

作者信息

Nimmo Francis, Neveu Marc, Howett Carly

机构信息

Dept. Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 USA.

Dept. Astronomy, University of Maryland, College Park, MD 20742 USA.

出版信息

Space Sci Rev. 2023;219(7):57. doi: 10.1007/s11214-023-01007-4. Epub 2023 Oct 6.

Abstract

Enceladus possesses a subsurface ocean beneath a conductive ice shell. Based on shell thickness models, the estimated total conductive heat loss from Enceladus is 25-40 GW; the measured heat output from the South Polar Terrain (SPT) is 4-19 GW. The present-day SPT heat flux is of order , comparable to estimated paleo-heat fluxes for other regions of Enceladus. These regions have nominal ages of about 2 Ga, but the estimates are uncertain because the impactor flux in the Saturnian system may not resemble that elsewhere. Enceladus's measured rate of orbital expansion implies a low dissipation factor for Saturn, with (neglecting the role of Dione). This value implies that Enceladus's present-day equilibrium tidal heat production (roughly 50 GW, but with large uncertainties) is in approximate balance with its heat loss. If is constant, Enceladus cannot be older than 1.5 Gyr (because otherwise it would have migrated more than is permissible). However, Saturn's dissipation may be better described by the "resonance-locking" theory, in which case Enceladus's orbit may have only evolved outwards by about 35% over the age of the Solar System. In the constant- scenario, any ancient tidal heating events would have been too energetic to be consistent with the observations. Because resonance-locking makes capture into earlier mean-motion orbital resonances less likely, the inferred ancient heating episodes probably took place when the current orbital resonance was already established. In the resonance-locking scenario, tidal heating did not change significantly over time, allowing for a long-lived ocean and a relatively stable ice shell. If so, Enceladus is an attractive target for future exploration from a habitability standpoint.

摘要

土卫二在其具有导电性的冰壳之下存在一个地下海洋。根据冰壳厚度模型,土卫二估计的总传导热损失为25 - 40吉瓦;从南极地区(SPT)测量到的热输出为4 - 19吉瓦。当前SPT的热通量约为 ,与土卫二其他区域估计的古热通量相当。这些区域的标称年龄约为20亿年,但由于土星系统中的撞击体通量可能与其他地方不同,所以这些估计并不确定。土卫二测量到的轨道扩张速率意味着土星的耗散因子较低, (忽略狄俄涅的作用)。这个值意味着土卫二当前的平衡潮汐热产生(大致为50吉瓦,但不确定性很大)与其热损失大致平衡。如果 是恒定的,土卫二的年龄不可能超过15亿年(因为否则它的迁移量会超过允许范围)。然而,土星的耗散可能用“共振锁定”理论能更好地描述,在这种情况下,土卫二的轨道在太阳系形成至今可能只向外演化了约35%。在 恒定的情况下,任何古老的潮汐加热事件能量都太大,与观测结果不一致。因为共振锁定使得捕获到更早的平均运动轨道共振的可能性降低,所以推断出的古老加热事件可能发生在当前轨道共振已经建立的时候。在共振锁定的情况下,潮汐加热随时间没有显著变化,这使得可能存在一个长期存在的海洋和相对稳定的冰壳。如果是这样,从宜居性的角度来看,土卫二是未来探索的一个有吸引力的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9314/10558398/8937307c98dd/11214_2023_1007_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验