Suppr超能文献

鉴定新型姜黄素衍生物抗胰腺癌:整合 3D-QSAR 药效团建模、虚拟筛选和分子动力学模拟的综合方法。

Identification of novel curcumin derivatives against pancreatic cancer: a comprehensive approach integrating 3D-QSAR pharmacophore modeling, virtual screening, and molecular dynamics simulations.

机构信息

Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra, Biskra, Algeria.

Basic Science Department, Prince Al Hussein Bin Abdullah II Academy for Civil Protection, Al-Balqa Applied University, Al-Salt, Jordan.

出版信息

J Biomol Struct Dyn. 2024;42(22):12021-12039. doi: 10.1080/07391102.2023.2266502. Epub 2023 Oct 9.

Abstract

Pancreatic cancer, known as the "silent killer," poses a daunting challenge in cancer therapy. The dysregulation of the PI3Kα signaling pathway in pancreatic cancer has attracted considerable interest as a promising target for therapeutic intervention. In this regard, the use of curcumin derivatives as inhibitors of PI3Kα has emerged, providing a novel and promising avenue for developing effective treatments for this devastating disease. Computational approaches were employed to explore this potential and investigate 58 curcumin derivatives with cytotoxic activity against the Panc-1 cell line. Our approach involved ligand-based pharmacophore modeling and atom-based 3D-QSAR analysis. The resulting QSAR model derived from the best-fitted pharmacophore hypothesis (AAHRR_1) demonstrated remarkable performance with high correlation coefficients (R) of 0.990 for the training set and 0.977 for the test set. The cross-validation coefficient (Q) of 0.971 also validated the model's predictive power. Tropsha's recommended criteria, including the Y-randomization test, were employed to ensure its reliability. Furthermore, an enrichment study was conducted to evaluate the model's performance in identifying active compounds. AAHRR_1 was used to screen a curated PubChem database of curcumin-related compounds. Two molecules (CID156189304 and CID154728220) exhibited promising pharmacokinetic properties and higher docking scores than Alpelisib, warranting further investigation. Extensive molecular dynamics simulations provided crucial insights into the conformational dynamics within the binding site, validating their stability and behavior. These findings contribute to our understanding of the potential therapeutic effectiveness of these compounds as PI3Kα inhibitors in pancreatic cancer.Communicated by Ramaswamy H. Sarma.

摘要

胰腺癌,被称为“沉默的杀手”,在癌症治疗中构成了严峻的挑战。PI3Kα 信号通路在胰腺癌中的失调已成为治疗干预的一个有前途的靶点,引起了广泛关注。在这方面,使用姜黄素衍生物作为 PI3Kα 的抑制剂已经出现,为开发这种毁灭性疾病的有效治疗方法提供了新的有前途的途径。计算方法被用来探索这种潜力,并研究了对 Panc-1 细胞系具有细胞毒性的 58 种姜黄素衍生物。我们的方法涉及基于配体的药效团建模和基于原子的 3D-QSAR 分析。从最佳拟合药效团假设(AAHRR_1)得出的 QSAR 模型表现出出色的性能,其训练集的相关系数(R)为 0.990,测试集的相关系数(R)为 0.977。交叉验证系数(Q)为 0.971 也验证了模型的预测能力。Tropsha 推荐的标准,包括 Y 随机化测试,被用来确保其可靠性。此外,还进行了富集研究,以评估模型在识别活性化合物方面的性能。AAHRR_1 用于筛选经过精心整理的 PubChem 姜黄素相关化合物数据库。两个分子(CID156189304 和 CID154728220)表现出有希望的药代动力学性质和比 Alpelisib 更高的对接分数,值得进一步研究。广泛的分子动力学模拟提供了关于结合部位内构象动力学的关键见解,验证了它们的稳定性和行为。这些发现有助于我们理解这些化合物作为 PI3Kα 抑制剂在胰腺癌中的潜在治疗效果。由 Ramaswamy H. Sarma 传达。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验