Suppr超能文献

利用数字熔解曲线的变异性准确鉴定细菌。

Harnessing Variabilities in Digital Melt Curves for Accurate Identification of Bacteria.

作者信息

Lee Pei-Wei, Chen Liben, Hsieh Kuangwen, Traylor Amelia, Wang Tza-Huei

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.

出版信息

Anal Chem. 2023 Oct 24;95(42):15522-15530. doi: 10.1021/acs.analchem.3c01654. Epub 2023 Oct 9.

Abstract

Digital PCR combined with high resolution melt (HRM) is an emerging method for identifying pathogenic bacteria with single cell resolution via species-specific digital melt curves. Currently, the development of such digital PCR-HRM assays entails first identifying PCR primers to target hypervariable gene regions within the target bacteria panel, next performing bulk-based PCR-HRM to examine whether the resulting species-specific melt curves possess sufficient interspecies variability (i.e., variability between bacterial species), and then digitizing the bulk-based PCR-HRM assays with melt curves that have high interspecies variability via microfluidics. In this work, we first report our discovery that the current development workflow can be inadequate because a bulk-based PCR-HRM assay that produces melt curves with high interspecies variability can, in fact, lead to a digital PCR-HRM assay that produces digital melt curves with unwanted intraspecies variability (i.e., variability within the same bacterial species), consequently hampering bacteria identification accuracy. Our subsequent investigation reveals that such intraspecies variability in digital melt curves can arise from PCR primers that target nonidentical gene copies or amplify nonspecifically. We then show that computational in silico HRM opens a window to inspect both interspecies and intraspecies variabilities and thus provides the missing link between bulk-based PCR-HRM and digital PCR-HRM. Through this new development workflow, we report a new digital PCR-HRM assay with improved bacteria identification accuracy. More broadly, this work can serve as the foundation for enhancing the development of future digital PCR-HRM assays toward identifying causative pathogens and combating infectious diseases.

摘要

数字PCR结合高分辨率熔解曲线分析(HRM)是一种新兴方法,可通过物种特异性数字熔解曲线以单细胞分辨率鉴定病原菌。目前,此类数字PCR-HRM分析方法的开发首先需要鉴定针对目标细菌组内高变基因区域的PCR引物,接着进行基于批量反应的PCR-HRM分析,以检查所得的物种特异性熔解曲线是否具有足够的种间变异性(即细菌物种之间的变异性),然后通过微流控技术将具有高种间变异性的熔解曲线的基于批量反应的PCR-HRM分析数字化。在本研究中,我们首次报告发现当前的开发流程可能并不完善,因为产生具有高种间变异性熔解曲线的基于批量反应的PCR-HRM分析实际上可能导致数字PCR-HRM分析产生具有不必要种内变异性(即同一细菌物种内的变异性)的数字熔解曲线,从而妨碍细菌鉴定的准确性。我们随后的研究表明,数字熔解曲线中的这种种内变异性可能源于靶向不同基因拷贝或非特异性扩增的PCR引物。然后我们表明,计算机模拟HRM为检查种间和种内变异性打开了一扇窗口,从而提供了基于批量反应的PCR-HRM与数字PCR-HRM之间缺失的环节。通过这一新的开发流程,我们报告了一种提高细菌鉴定准确性的新型数字PCR-HRM分析方法。更广泛地说,这项工作可为未来数字PCR-HRM分析方法的发展提供基础,以识别致病病原体并对抗传染病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验