Lun Meng-Meng, Ni Hao-Fei, Zhang Zhi-Xu, Li Jun-Yi, Jia Qiang-Qiang, Zhang Yi, Zhang Yujian, Fu Da-Wei
Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
Angew Chem Int Ed Engl. 2024 Jan 8;63(2):e202313590. doi: 10.1002/anie.202313590. Epub 2023 Nov 3.
The ability to generate and manipulate photoluminescence (PL) behavior has been of primary importance for applications in information security. Excavating novel optical effects to create more possibilities for information encoding has become a continuous challenge. Herein, we present an unprecedented PL temporary quenching that highly couples with thermodynamic phase transition in a hybrid crystal (DMML) MnBr (DMML=N,N-dimethylmorpholinium). Such unusual PL behavior originates from the anomalous variation of [MnBr ] tetrahedrons that leads to non-radiation recombination near the phase transition temperature of 340 K. Remarkably, the suitable detectable temperature, narrow response window, high sensitivity, and good cyclability of this PL temporary quenching will endow encryption applications with high concealment, operational flexibility, durability, and commercial popularization. Profited from these attributes, a fire-new optical encryption model is devised to demonstrate high confidential information security. This unprecedented optical effect would provide new insights and paradigms for the development of luminescent materials to enlighten future information encryption.
对于信息安全应用而言,产生和操控光致发光(PL)行为的能力至关重要。挖掘新颖的光学效应以为信息编码创造更多可能性一直是一项持续的挑战。在此,我们展示了一种前所未有的PL临时猝灭现象,它与混合晶体(DMML)MnBr(DMML = N,N - 二甲基吗啉鎓)中的热力学相变高度耦合。这种不寻常的PL行为源于[MnBr]四面体的异常变化,该变化导致在340 K的相变温度附近发生非辐射复合。值得注意的是,这种PL临时猝灭的合适可检测温度、窄响应窗口、高灵敏度和良好的循环性将赋予加密应用高隐蔽性、操作灵活性、耐用性和商业推广性。受益于这些特性,设计了一种全新的光学加密模型以展示高机密信息安全性。这种前所未有的光学效应将为发光材料的发展提供新的见解和范例,以启发未来的信息加密。