Guo Yanming, Chang Jin, Hu Liangqing, Lu Yinpeng, Yao Shipeng, Su Xiaojiang, Zhang Xinyi, Zhang Hexin, Feng Jing
Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China.
ChemSusChem. 2024 Feb 8;17(3):e202301148. doi: 10.1002/cssc.202301148. Epub 2023 Nov 22.
The achievement of the outstanding theoretical capacitance of nickel sulfide (NiS ) is challenging due to its low conductivity, slow electrochemical kinetics, and poor structural stability. In this study, we utilize polyaniline (PANI) as a linker to anchor the NiS with a hollow bowl-like structure, uniformly dispersed at the surface of graphene oxide (GO)(NiS @15PG). The presence of PANI provides growth sites, resulting in a uniform and dense arrangement of NiS . This morphological modulation of NiS increases the contact area between the active material to electrolyte. Additionally, PANI effectively connects NiS with the conductive network of GO, which advances the electrical conductivity and ion diffusion properties. As a result, the R (charge transfer resistance) and Z (Warburg impedance) of NiS @15PG decrease by 82.61 % and 66.76 % respectively. This unique structure confers NiS @15PG with high specific capacitance (536.13 C g at 1 A g ) and excellent multiplicative property of 60.93 % at 20 A g . The assembled NiS @15PG//YP-50 supercapacitors (HSC) demonstrates an energy density (13.09 Wh kg ) at a high-power density (16 kW kg ). The capacity retention after 10,000 cycles at 5 A g is 86.59 %, indicating its significant potential for practical applications.
硫化镍(NiS)因其低电导率、缓慢的电化学动力学和较差的结构稳定性,要实现出色的理论电容颇具挑战性。在本研究中,我们利用聚苯胺(PANI)作为连接体,以锚定具有中空碗状结构的NiS,使其均匀分散在氧化石墨烯(GO)表面(NiS@15PG)。PANI的存在提供了生长位点,导致NiS形成均匀且致密的排列。NiS的这种形态调制增加了活性材料与电解质之间的接触面积。此外,PANI有效地将NiS与GO的导电网络连接起来,提高了电导率和离子扩散性能。结果,NiS@15PG的R(电荷转移电阻)和Z(Warburg阻抗)分别降低了82.61%和66.76%。这种独特结构赋予NiS@15PG高比电容(在1 A g时为536.13 C g)以及在20 A g时60.93%的出色倍率性能。组装的NiS@15PG//YP - 50超级电容器(HSC)在高功率密度(16 kW kg)下展现出能量密度(13.09 Wh kg)。在5 A g下循环10000次后的容量保持率为86.59%,表明其在实际应用中具有巨大潜力。