Suppr超能文献

机器学习辅助设计用于溶剂回收的薄膜复合膜。

Machine Learning-Assisted Design of Thin-Film Composite Membranes for Solvent Recovery.

机构信息

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore.

出版信息

Environ Sci Technol. 2023 Oct 24;57(42):15914-15924. doi: 10.1021/acs.est.3c04773. Epub 2023 Oct 10.

Abstract

Organic solvents are extensively utilized in industries as raw materials, reaction media, and cleaning agents. It is crucial to efficiently recover solvents for environmental protection and sustainable manufacturing. Recently, organic solvent nanofiltration (OSN) has emerged as an energy-efficient membrane technology for solvent recovery; however, current OSN membranes are largely fabricated by trial-and-error methods. In this study, for the first time, we develop a machine learning (ML) approach to design new thin-film composite membranes for solvent recovery. The monomers used in interfacial polymerization, along with membrane, solvent and solute properties, are featurized to train ML models via gradient boosting regression. The ML models demonstrate high accuracy in predicting OSN performance including solvent permeance and solute rejection. Subsequently, 167 new membranes are designed from 40 monomers and their OSN performance is predicted by the ML models for common solvents (methanol, acetone, dimethylformamide, and -hexane). New top-performing membranes are identified with methanol permeance superior to that of existing membranes. Particularly, nitrogen-containing heterocyclic monomers are found to enhance microporosity and contribute to higher permeance. Finally, one new membrane is experimentally synthesized and tested to validate the ML predictions. Based on the chemical structures of monomers, the ML approach developed here provides a bottom-up strategy toward the rational design of new membranes for high-performance solvent recovery and many other technologically important applications.

摘要

有机溶剂在工业中被广泛用作原材料、反应介质和清洁剂。为了保护环境和实现可持续制造,高效回收溶剂至关重要。最近,有机溶剂纳滤(OSN)作为一种节能的膜技术,已成为溶剂回收的一种方法;然而,目前的 OSN 膜大多是通过反复试验的方法制造的。在这项研究中,我们首次开发了一种机器学习(ML)方法,用于设计用于溶剂回收的新型薄膜复合膜。通过梯度提升回归,将界面聚合中使用的单体以及膜、溶剂和溶质的特性进行特征化,以训练 ML 模型。ML 模型在预测 OSN 性能(包括溶剂透过率和溶质截留率)方面表现出很高的准确性。随后,根据 ML 模型对 40 种单体的 OSN 性能进行预测,设计了 167 种新膜,用于常见溶剂(甲醇、丙酮、二甲基甲酰胺和正己烷)。新的高性能膜被识别出来,其甲醇透过率优于现有膜。特别是,含氮杂环单体被发现能增强微孔率,从而提高透过率。最后,实验合成并测试了一种新膜,以验证 ML 的预测。基于单体的化学结构,本研究开发的 ML 方法为高性能溶剂回收和许多其他技术上重要的应用提供了一种从下到上的新膜设计策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验