Suppr超能文献

以C为正极的络合型铝离子电池的超高容量

Ultrahigh Capacity from Complexation-Enabled Aluminum-Ion Batteries with C as the Cathode.

作者信息

Huang Chenli, Yang Ying, Li Mengyang, Qi Xiaoqun, Pan Changwang, Guo Kun, Bao Lipiao, Lu Xing

机构信息

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, 430074, P. R. China.

Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China.

出版信息

Adv Mater. 2024 Feb;36(6):e2306244. doi: 10.1002/adma.202306244. Epub 2023 Dec 7.

Abstract

Restricted by the available energy storage modes, currently rechargeable aluminum-ion batteries (RABs) can only provide a very limited experimental capacity, regardless of the very high gravimetric capacity of Al (2980 mAh g ). Here, a novel complexation mechanism is reported for energy storage in RABs by utilizing 0D fullerene C as the cathode. This mechanism enables remarkable discharge voltage (≈1.65 V) and especially a record-high reversible specific capacity (750 mAh g at 200 mA g ) of RABs. By means of in situ Raman monitoring, mass spectrometry, and density functional theory (DFT) calculations, it is found that this elevated capacity is attributed to the direct complexation of one C molecule with 23.5 (super)halogen moieties (superhalogen AlCl and/or halogen Cl) in average, forming (super)halogenated C ·(AlCl ) Cl complexes. Upon discharging, decomplexation of C ·(AlCl ) Cl releases AlCl /Cl ions while preserving the intact fullerene cage. This work provides a new route to realize high-capacity and long-life batteries following the complexation mechanism.

摘要

受现有储能模式的限制,目前的可充电铝离子电池(RABs)尽管铝具有很高的比容量(2980 mAh g),但只能提供非常有限的实验容量。在此,报道了一种通过使用零维富勒烯C作为阴极在RABs中进行储能的新型络合机制。这种机制使RABs具有显著的放电电压(≈1.65 V),特别是创纪录的高可逆比容量(在200 mA g下为750 mAh g)。通过原位拉曼监测、质谱分析和密度泛函理论(DFT)计算,发现这种提高的容量归因于一个C分子平均与23.5个(超)卤素部分(超卤素AlCl和/或卤素Cl)直接络合,形成(超)卤化C·(AlCl)Cl络合物。放电时,C·(AlCl)Cl的解络合释放出AlCl/Cl离子,同时保持完整的富勒烯笼。这项工作为遵循络合机制实现高容量和长寿命电池提供了一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验