Preston Dan, Evans Jack D
Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia.
Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, Adelaide, SA 5000, Australia.
Angew Chem Int Ed Engl. 2023 Dec 4;62(49):e202314378. doi: 10.1002/anie.202314378. Epub 2023 Oct 31.
One of the key challenges of metallo-supramolecular chemistry is to maintain the ease of self-assembly but, at the same time, create structures of increasingly high levels of complexity. In palladium(II) quadruply stranded lantern-shaped cages, this has been achieved through either 1) the formation of heteroleptic (multi-ligand) assemblies, or 2) homoleptic assemblies from low-symmetry ligands. Heteroleptic cages formed from low-symmetry ligands, a hybid of these two approaches, would add an additional rich level of complexity but no examples of these have been reported. Here we use a system of ancillary complementary ligand pairings at the termini of cage ligands to target heteroleptic assemblies: these complementary pairs can only interact (through coordination to a single Pd(II) metal ion) between ligands in a cis position on the cage. Complementarity between each pair (and orthogonality to other pairs) is controlled by denticity (tridentate to monodentate or bidentate to bidentate) and/or hydrogen-bonding capability (AA to DD or AD to DA). This allows positional and orientational control over ligands with different ancillary sites. By using this approach, we have successfully used low-symmetry ligands to synthesise complex heteroleptic cages, including an example with four different low-symmetry ligands.
金属超分子化学的关键挑战之一是在保持自组装简便性的同时,构建复杂度不断提高的结构。在钯(II)四链灯笼状笼合物中,这一目标已通过以下两种方式实现:1)形成杂配(多配体)组装体;2)由低对称性配体形成同配组装体。由低对称性配体形成的杂配笼合物,即这两种方法的结合,会增加额外的丰富复杂度层次,但尚未见相关报道。在此,我们在笼合物配体的末端使用辅助互补配体对体系来靶向杂配组装体:这些互补对只能在笼合物上处于顺式位置的配体之间相互作用(通过与单个钯(II)金属离子配位)。每对之间的互补性(以及与其他对的正交性)由齿合度(三齿到单齿或双齿到双齿)和/或氢键能力(AA对DD或AD对DA)控制。这使得能够对具有不同辅助位点的配体进行位置和取向控制。通过使用这种方法,我们成功地利用低对称性配体合成了复杂的杂配笼合物,包括一个含有四种不同低对称性配体的例子。