School of Public Affairs, Zhejiang University, Hangzhou, 310058, China.
College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
Environ Sci Pollut Res Int. 2023 Nov;30(51):111410-111422. doi: 10.1007/s11356-023-30119-1. Epub 2023 Oct 10.
With the global warming and rapid urbanization in China, the urban built environment has undergone rapid changes, and the land surface temperatures (LSTs) of urban communities have obvious spatial heterogeneity. To explore the key driving factors of community LSTs, the multi-source data and spatial statistical methods being jointly used to analyze the spatial characteristics and main influencing factors of LST at the community level in the Beilin District of Xi'an City, China. The results are as follows: (1) Compared with communities dominated by construction land, communities with large area of green space and water bodies have lower LST. (2) According to the Akaike's information criterion (AICc) and maximum of adjusted R, and other parameters, the No.1236 model was selected as the optimal model to analyze the influencing factors of community LST by exploratory data analysis, including building density (BD), building height standard deviation (BHS), percentage of public administration and public services land (PASL), percentage of green space and square land (PGSL), population density (POPD), normalized difference impervious surface index (NDISI), and perimeter-area fractal dimension (PAFRAC). (3) For each increase of one unit in NDISI and BHS when other factors remain unchanged, the LST will increase by 0.569 °C and decrease by 0.478 °C, respectively. (4) From the spatial stability and distribution of Local-R, the warming factors of community LST are mainly NDISI, PAFRAC, BD, and PASL, while the cooling factors are BHS and PGSL. The spatial heterogeneity of community LST is not only related to the change of underlying surface properties but is also affected by intra-urban architectural morphology. Therefore, reasonable planning of urban built environment is of great significance for mitigating heat islands.
随着全球变暖与中国的快速城市化,城市建成环境发生了快速变化,城市社区的地表温度(LST)具有明显的空间异质性。为了探究社区 LST 的关键驱动因素,本研究采用多源数据和空间统计方法,分析了中国西安市碑林区社区层面 LST 的空间特征及其主要影响因素。结果表明:(1)与以建设用地为主的社区相比,大面积绿地和水体的社区 LST 较低。(2)根据 Akaike 信息准则(AICc)和最大调整 R2 等参数,选择探索性数据分析来分析社区 LST 影响因素的 1236 号模型为最优模型,其包含建筑密度(BD)、建筑高度标准差(BHS)、公共管理与公共服务用地百分比(PASL)、绿地与广场用地百分比(PGSL)、人口密度(POPD)、归一化差异不透水面指数(NDISI)和周长-面积分形维数(PAFRAC)。(3)当其他因素保持不变时,每个 NDISI 和 BHS 增加一个单位,LST 将分别增加 0.569°C 和减少 0.478°C。(4)从 Local-R 的空间稳定性和分布来看,社区 LST 的升温因素主要是 NDISI、PAFRAC、BD 和 PASL,而降温因素主要是 BHS 和 PGSL。社区 LST 的空间异质性不仅与下垫面性质的变化有关,还受到城市内部建筑形态的影响。因此,合理规划城市建成环境对于缓解热岛效应具有重要意义。