Suppr超能文献

基于小波的区间估计、时频β爆发检测:帕金森病的新见解。

Wavelet-Based Bracketing, Time-Frequency Beta Burst Detection: New Insights in Parkinson's Disease.

机构信息

Department of Neurology, University Hospital Würzburg (UKW), Josef-Schneider-Str. 11, 97080, Würzburg, Germany.

Department of Brain Sciences, Imperial College London, London, UK.

出版信息

Neurotherapeutics. 2023 Oct;20(6):1767-1778. doi: 10.1007/s13311-023-01447-4. Epub 2023 Oct 11.

Abstract

Studies have shown that beta band activity is not tonically elevated but comprises exaggerated phasic bursts of varying durations and magnitudes, for Parkinson's disease (PD) patients. Current methods for detecting beta bursts target a single frequency peak in beta band, potentially ignoring bursts in the wider beta band. In this study, we propose a new robust framework for beta burst identification across wide frequency ranges. Chronic local field potential at-rest recordings were obtained from seven PD patients implanted with Medtronic SenSight™ deep brain stimulation (DBS) electrodes. The proposed method uses wavelet decomposition to compute the time-frequency spectrum and identifies bursts spanning multiple frequency bins by thresholding, offering an additional burst measure, ∆f, that captures the width of a burst in the frequency domain. Analysis included calculating burst duration, magnitude, and ∆f and evaluating the distribution and likelihood of bursts between the low beta (13-20 Hz) and high beta (21-35 Hz). Finally, the results of the analysis were correlated to motor impairment (MDS-UPDRS III) med off scores. We found that low beta bursts with longer durations and larger width in the frequency domain (∆f) were positively correlated, while high beta bursts with longer durations and larger ∆f were negatively correlated with motor impairment. The proposed method, finding clear differences between bursting behavior in high and low beta bands, has clearly demonstrated the importance of considering wide frequency bands for beta burst behavior with implications for closed-loop DBS paradigms.

摘要

研究表明,帕金森病(PD)患者的β频段活动不是持续升高的,而是由持续时间和幅度不同的夸大的相位爆发组成。目前用于检测β爆发的方法针对β频段中的单个频率峰值,可能忽略了更宽β频段中的爆发。在这项研究中,我们提出了一种新的稳健框架,用于在宽频率范围内识别β爆发。从 7 名植入 Medtronic SenSight™深部脑刺激(DBS)电极的 PD 患者中获得慢性局部场电位静息记录。所提出的方法使用小波分解来计算时频谱,并通过阈值识别跨越多个频带的爆发,提供了一个额外的爆发度量∆f,它捕获了爆发在频域中的宽度。分析包括计算爆发持续时间、幅度和∆f,并评估低β(13-20 Hz)和高β(21-35 Hz)之间爆发的分布和可能性。最后,将分析结果与运动障碍(MDS-UPDRS III)脱机评分相关联。我们发现,低β频段中持续时间更长且频率域中宽度更大的爆发(∆f)呈正相关,而高β频段中持续时间更长且∆f更大的爆发与运动障碍呈负相关。该方法清楚地表明,在考虑用于闭环 DBS 范式的β爆发行为时,需要考虑宽频带,这表明在高β和低β频段之间的爆发行为存在明显差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09a6/10684463/c40bb4715eab/13311_2023_1447_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验