Suppr超能文献

低电位碘化物氧化助力双原子CoFe─N─C催化剂用于超稳定和高能效锌空气电池。

Low-Potential Iodide Oxidation Enables Dual-Atom CoFe─N─C Catalysts for Ultra-Stable and High-Energy-Efficiency Zn-Air Batteries.

作者信息

Fan Hong-Shuang, Liang Xiongyi, Ma Fei-Xiang, Zhang Guobin, Liu Zheng-Qi, Zhen Liang, Zeng Xiao Cheng, Xu Cheng-Yan

机构信息

Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China.

出版信息

Small. 2024 Feb;20(8):e2307863. doi: 10.1002/smll.202307863. Epub 2023 Oct 11.

Abstract

The low energy efficiency and limited cycling life of rechargeable Zn-air batteries (ZABs) arising from the sluggish oxygen reduction/evolution reactions (ORR/OERs) severely hinder their commercial deployment. Herein, a zeolitic imidazolate framework (ZIF)-derived strategy associated with subsequent thermal fixing treatment is proposed to fabricate dual-atom CoFe─N─C nanorods (Co Fe ─N─C NRs) containing atomically dispersed bimetallic Co/Fe sites, which can promote the energy efficiency and cyclability of ZABs simultaneously by introducing the low-potential oxidation redox reactions. Compared to the mono-metallic nanorods, Co Fe ─N─C NRs exhibit remarkable ORR performance including a positive half-wave potential of 0.933 V versus reversible hydrogen electrode (RHE) in alkaline electrolyte. Surprisingly, after introducing the potassium iodide (KI) additive, the oxidation overpotential of Co Fe ─N─C NRs to reach 10 mA cm can be significantly reduced by 395 mV compared to the conventional destructive OER. Theoretical calculations show that the markedly decreased overpotential of iodide oxidation can be ascribed to the synergistic effects of neighboring Co─Fe diatomic sites as the unique adsorption sites. Overall, aqueous ZABs assembled with Co Fe ─N─C NRs and KI as the air-cathode catalyst and electrolyte additive, respectively, can deliver a low charging voltage of 1.76 V and ultralong cycling stability of over 230 h with a high energy efficiency of ≈68%.

摘要

由于氧还原/析氧反应(ORR/OER)缓慢,可充电锌空气电池(ZAB)的低能量效率和有限的循环寿命严重阻碍了它们的商业应用。在此,我们提出了一种与后续热固定处理相关的沸石咪唑框架(ZIF)衍生策略,以制备含有原子分散双金属Co/Fe位点的双原子CoFe─N─C纳米棒(Co Fe ─N─C NRs),通过引入低电位氧化还原反应,可同时提高ZAB的能量效率和循环性能。与单金属纳米棒相比,Co Fe ─N─C NRs在碱性电解质中表现出显著的ORR性能,相对于可逆氢电极(RHE)的正半波电位为0.933 V。令人惊讶的是,引入碘化钾(KI)添加剂后,与传统的破坏性OER相比,Co Fe ─N─C NRs达到10 mA cm的氧化过电位可显著降低395 mV。理论计算表明,碘化物氧化过电位的显著降低可归因于相邻Co─Fe双原子位点作为独特吸附位点的协同效应。总体而言,分别以Co Fe ─N─C NRs和KI作为空气阴极催化剂和电解质添加剂组装的水系ZAB可提供1.76 V的低充电电压和超过230 h的超长循环稳定性,能量效率高达≈68%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验