Zhang Di, Chen Chen, Tan Fa, Qian Beibei, Li Wei, He Xuan, Lei Susan
Department of Telecommunications, Xi'an Jiaotong University, Xi'an, China.
School of Information Engineering, Xi'an Eurasia University, Xi'an, China.
Front Neurorobot. 2023 Sep 26;17:1276208. doi: 10.3389/fnbot.2023.1276208. eCollection 2023.
Human behavior recognition plays a crucial role in the field of smart education. It offers a nuanced understanding of teaching and learning dynamics by revealing the behaviors of both teachers and students. In this study, to address the exigencies of teaching behavior analysis in smart education, we first constructed a teaching behavior analysis dataset called EuClass. EuClass contains 13 types of teacher/student behavior categories and provides multi-view, multi-scale video data for the research and practical applications of teacher/student behavior recognition. We also provide a teaching behavior analysis network containing an attention-based network and an intra-class differential representation learning module. The attention mechanism uses a two-level attention module encompassing spatial and channel dimensions. The intra-class differential representation learning module utilized a unified loss function to reduce the distance between features. Experiments conducted on the EuClass dataset and a widely used action/gesture recognition dataset, IsoGD, demonstrate the effectiveness of our method in comparison to current state-of-the-art methods, with the recognition accuracy increased by 1-2% on average.
人类行为识别在智能教育领域发挥着至关重要的作用。它通过揭示教师和学生的行为,对教学动态提供了细致入微的理解。在本研究中,为应对智能教育中教学行为分析的迫切需求,我们首先构建了一个名为EuClass的教学行为分析数据集。EuClass包含13种教师/学生行为类别,并为教师/学生行为识别的研究和实际应用提供多视图、多尺度的视频数据。我们还提供了一个教学行为分析网络,其中包含一个基于注意力的网络和一个类内差异表示学习模块。注意力机制使用了一个包含空间和通道维度的两级注意力模块。类内差异表示学习模块利用统一的损失函数来减小特征之间的距离。在EuClass数据集和一个广泛使用的动作/手势识别数据集IsoGD上进行的实验表明,与当前最先进的方法相比,我们的方法是有效的,平均识别准确率提高了1-2%。