Suppr超能文献

智能课堂中融入数据增强与学习特征表示的学生学习行为识别。

Student Learning Behavior Recognition Incorporating Data Augmentation with Learning Feature Representation in Smart Classrooms.

机构信息

Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China.

Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China.

出版信息

Sensors (Basel). 2023 Sep 30;23(19):8190. doi: 10.3390/s23198190.

Abstract

A robust and scientifically grounded teaching evaluation system holds significant importance in modern education, serving as a crucial metric that reflects the quality of classroom instruction. However, current methodologies within smart classroom environments have distinct limitations. These include accommodating a substantial student population, grappling with object detection challenges due to obstructions, and encountering accuracy issues in recognition stemming from varying observation angles. To address these limitations, this paper proposes an innovative data augmentation approach designed to detect distinct student behaviors by leveraging focused behavioral attributes. The primary objective is to alleviate the pedagogical workload. The process begins with assembling a concise dataset tailored for discerning student learning behaviors, followed by the application of data augmentation techniques to significantly expand its size. Additionally, the architectural prowess of the Extended-efficient Layer Aggregation Networks (E-ELAN) is harnessed to effectively extract a diverse array of learning behavior features. Of particular note is the integration of the Channel-wise Attention Module (CBAM) focal mechanism into the feature detection network. This integration plays a pivotal role, enhancing the network's ability to detect key cues relevant to student learning behaviors and thereby heightening feature identification precision. The culmination of this methodological journey involves the classification of the extracted features through a dual-pronged conduit: the Feature Pyramid Network (FPN) and the Path Aggregation Network (PAN). Empirical evidence vividly demonstrates the potency of the proposed methodology, yielding a mean average precision (mAP) of 96.7%. This achievement surpasses comparable methodologies by a substantial margin of at least 11.9%, conclusively highlighting the method's superior recognition capabilities. This research has an important impact on the field of teaching evaluation system, which helps to reduce the burden of educators on the one hand, and makes teaching evaluation more objective and accurate on the other hand.

摘要

一个强大且有科学依据的教学评估系统在现代教育中具有重要意义,它是衡量课堂教学质量的关键指标。然而,智能教室环境中的当前方法存在明显的局限性。这些局限性包括容纳大量的学生群体、因障碍物而导致的目标检测挑战,以及由于观察角度的不同而导致识别精度问题。为了解决这些局限性,本文提出了一种创新的数据增强方法,旨在通过利用专注的行为属性来检测不同的学生行为。主要目标是减轻教学工作负担。该过程首先将组装一个精简的数据集,用于辨别学生的学习行为,然后应用数据增强技术来显著扩大其规模。此外,还利用扩展高效层聚合网络(E-ELAN)的架构优势,有效地提取出各种学习行为特征。值得注意的是,将通道注意力模块(CBAM)焦点机制集成到特征检测网络中。这种集成发挥了关键作用,增强了网络检测与学生学习行为相关的关键线索的能力,从而提高了特征识别的精度。这种方法的最终结果是通过双通道进行提取特征的分类:特征金字塔网络(FPN)和路径聚合网络(PAN)。实证证据生动地证明了所提出的方法的有效性,其平均精度(mAP)达到 96.7%。这一成就比可比方法高出至少 11.9%,这一结果突出了该方法卓越的识别能力。这项研究对教学评估系统领域产生了重要影响,一方面减轻了教育工作者的负担,另一方面使教学评估更加客观和准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/110b/10575413/1cabbfc94390/sensors-23-08190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验