Suppr超能文献

轴突形成的阶段:使用视频增强对比度-微分干涉对比显微镜对培养的海兔轴突生长进行的观察。

Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy.

作者信息

Goldberg D J, Burmeister D W

出版信息

J Cell Biol. 1986 Nov;103(5):1921-31. doi: 10.1083/jcb.103.5.1921.

Abstract

The regenerative growth in culture of the axons of two giant identified neurons from the central nervous system of Aplysia californica was observed using video-enhanced contrast-differential interference contrast microscopy. This technique allowed the visualization in living cells of the membranous organelles of the growth cone. Elongation of axonal branches always occurred through the same sequence of events: A flat organelle-free veil protruded from the front of the growth cone, gradually filled with vesicles that entered by fast axonal transport and Brownian motion from the main body of the growth cone, became more voluminous and engorged with organelles (vesicles, mitochondria, and one or two large, irregular, refractile bodies), and, finally, assumed the cylindrical shape of the axon branch with the organelles predominantly moving by bidirectional fast axonal transport. The veil is thus the nascent axon. Because veils appear to be initially free of membranous organelles, addition of membrane to the plasmalemma by exocytosis is likely to occur in the main body of the growth cone rather than at the leading edge. Veils almost always formed with filopodial borders, protruding between either fully extended or growing filopodia. Therefore, one function of the filopodia is to direct elongation by demarcating the pathway along which axolemma flows. Models of axon growth in which the body of the growth cone is pulled forward, or in which advance of the leading edge is achieved by filopodial shortening or contraction against an adhesion to the substrate, are inconsistent with our observations. We suggest that, during the elongation phase of growth, filopodia may act as structural supports.

摘要

利用视频增强对比度 - 微分干涉对比显微镜观察了来自加州海兔中枢神经系统的两个已鉴定的巨型神经元轴突在培养中的再生生长。这项技术能够在活细胞中观察生长锥的膜性细胞器。轴突分支的伸长总是通过相同的一系列事件发生:一个无细胞器的扁平面纱从生长锥前端突出,逐渐充满通过快速轴突运输和布朗运动从生长锥主体进入的囊泡,变得更加膨大并充满细胞器(囊泡、线粒体以及一两个大的、不规则的、折射性的物体),最后,呈现出轴突分支的圆柱形,细胞器主要通过双向快速轴突运输移动。因此,面纱就是新生的轴突。由于面纱最初似乎没有膜性细胞器,通过胞吐作用向质膜添加膜可能发生在生长锥的主体而非前沿。面纱几乎总是在丝状伪足边界处形成,在完全伸展或正在生长的丝状伪足之间突出。因此,丝状伪足的一个功能是通过划定轴膜流动的路径来引导伸长。那些认为生长锥主体被向前拉动,或者前沿的推进是通过丝状伪足缩短或收缩以对抗与底物的粘附来实现的轴突生长模型与我们的观察结果不一致。我们认为,在生长的伸长阶段,丝状伪足可能起到结构支撑的作用。

相似文献

2
Local role of Ca2+ in formation of veils in growth cones.钙离子在生长锥中形成面纱的局部作用。
J Neurosci. 1988 Jul;8(7):2596-605. doi: 10.1523/JNEUROSCI.08-07-02596.1988.

引用本文的文献

6
Advances in Understanding the Molecular Mechanisms of Neuronal Polarity.神经元极性分子机制理解方面的进展
Mol Neurobiol. 2023 May;60(5):2851-2870. doi: 10.1007/s12035-023-03242-w. Epub 2023 Feb 4.
9
Mathematical models of neuronal growth.神经元生长的数学模型。
Biomech Model Mechanobiol. 2022 Feb;21(1):89-118. doi: 10.1007/s10237-021-01539-0. Epub 2022 Jan 7.

本文引用的文献

1
Dissociated dorsal root ganglia in tissue culture.组织培养中的背根神经节分离
Am J Anat. 1956 Jul;99(1):81-129. doi: 10.1002/aja.1000990105.
10
Neuronal growth cones.神经元生长锥
Annu Rev Physiol. 1983;45:567-80. doi: 10.1146/annurev.ph.45.030183.003031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验