Xiong Tao, Chen Yaqing, Qiu Ruizhi, Yuan Hongkuan
School of Physical Science and Technology, Southwest University, Chongqing, 400715, China.
Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621907, China.
Phys Chem Chem Phys. 2023 Oct 25;25(41):28020-28033. doi: 10.1039/d3cp02954a.
Atomic functionality of two-dimensional (2D) materials, typically with a controllable doping route for offering regular atomic arrangement as well as excellent magnetism, is crucial for both fundamental studies and spintronic applications. Here, the adsorptions of the 5f-electron actinide series (An = Ac-Am) on porous graphene-like carbon-nitride (gh-CN) layers are explored to determine their structural stabilities, electronic nature and magnetic properties using the combination of density functional theory (DFT) calculations, molecular dynamics (AIMD), Monte Carlo (MC) simulations and chemical bonding analyses. Our investigations reveal that each An atom can be individually adsorbed at the vacancy site of gh-CN sheet with high energetic, thermal and dynamical stabilities, which are rooted in the major interactions of ionic An-N bonding as well as the minor interactions of covalent bonding of An-5f6d states with N-2s2p states. The delocalization of a very few 5f electrons is dependent on whether they occupy the suborbitals that are matching and conducive to hybridize with the ligand orbitals forming the 5f-2s2p covalent bonds. We propose that the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism plays a determining role for the inter-atomic 5f-5f magnetic exchange the 6d electrons as the conduction electrons. Large magnetic moment and magnetic anisotropy energy (MAE) from the localized 5f electrons, together with the metallic characteristics owing to the delocalized 6d electrons, render these An-based 2D materials excellent metallic magnets, especially for the U@gh-CN system with the modest magnetic moment of 0.6 , large MAE of 53 meV and high Curie temperature () of 538 K.
二维(2D)材料的原子功能,通常具有可控的掺杂途径以提供规则的原子排列以及优异的磁性,这对于基础研究和自旋电子学应用都至关重要。在此,利用密度泛函理论(DFT)计算、分子动力学(AIMD)、蒙特卡罗(MC)模拟和化学键分析相结合的方法,研究了5f电子锕系元素(An = Ac - Am)在多孔类石墨烯碳氮化物(gh - CN)层上的吸附情况,以确定其结构稳定性、电子性质和磁性。我们的研究表明,每个An原子都可以以高能量、热稳定性和动力学稳定性单独吸附在gh - CN片层的空位处,这源于离子An - N键的主要相互作用以及An - 5f6d态与N - 2s2p态的共价键的次要相互作用。极少数5f电子的离域取决于它们是否占据与配体轨道匹配且有利于形成5f - 2s2p共价键的杂化的子轨道。我们提出,鲁德曼 - 基特尔 - 卡苏亚 - 约西达(RKKY)机制在原子间5f - 5f磁交换中起决定性作用,其中6d电子作为传导电子。局域化5f电子产生的大磁矩和磁各向异性能量(MAE),以及离域化6d电子导致的金属特性,使这些基于An的二维材料成为优异的金属磁体,特别是对于具有0.6的适度磁矩、53 meV的大MAE和538 K的高居里温度()的U@gh - CN体系。