College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
Nucleic Acids Res. 2024 Jan 5;52(D1):D1155-D1162. doi: 10.1093/nar/gkad824.
Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated the large-scale quantification of proteins and microproteins, thereby revealing altered signalling pathways across many different cancer types. However, specialized and comprehensive resources are lacking for cancer proteomics. Here, we describe CancerProteome (http://bio-bigdata.hrbmu.edu.cn/CancerProteome), which functionally deciphers and visualizes the proteome landscape in cancer. We manually curated and re-analyzed publicly available MS-based quantification and post-translational modification (PTM) proteomes, including 7406 samples from 21 different cancer types, and also examined protein abundances and PTM levels in 31 120 proteins and 4111 microproteins. Six major analytical modules were developed with a view to describe protein contributions to carcinogenesis using proteome analysis, including conventional analyses of quantitative and the PTM proteome, functional enrichment, protein-protein associations by integrating known interactions with co-expression signatures, drug sensitivity and clinical relevance analyses. Moreover, protein abundances, which correlated with corresponding transcript or PTM levels, were evaluated. CancerProteome is convenient as it allows users to access specific proteins/microproteins of interest using quick searches or query options to generate multiple visualization results. In summary, CancerProteome is an important resource, which functionally deciphers the cancer proteome landscape and provides a novel insight for the identification of tumor protein markers in cancer.
基于质谱(MS)的蛋白质组学的进展极大地促进了蛋白质和微蛋白质的大规模定量,从而揭示了许多不同癌症类型中改变的信号通路。然而,癌症蛋白质组学缺乏专门和全面的资源。在这里,我们描述了 CancerProteome(http://bio-bigdata.hrbmu.edu.cn/CancerProteome),它可以对癌症中的蛋白质组景观进行功能解码和可视化。我们手动整理和重新分析了公开的基于 MS 的定量和翻译后修饰(PTM)蛋白质组学数据,包括来自 21 种不同癌症类型的 7406 个样本,还检查了 31120 种蛋白质和 4111 种微蛋白质的蛋白质丰度和 PTM 水平。开发了六个主要的分析模块,旨在使用蛋白质组分析描述蛋白质对致癌作用的贡献,包括定量和 PTM 蛋白质组的常规分析、功能富集、通过整合已知相互作用和共表达特征的蛋白质-蛋白质关联、药物敏感性和临床相关性分析。此外,还评估了与相应转录本或 PTM 水平相关的蛋白质丰度。CancerProteome 非常方便,用户可以使用快速搜索或查询选项访问感兴趣的特定蛋白质/微蛋白质,以生成多种可视化结果。总之,CancerProteome 是一个重要的资源,它可以对癌症蛋白质组景观进行功能解码,并为癌症中肿瘤蛋白标志物的鉴定提供新的见解。