Suppr超能文献

含能金属有机骨架材料的制备:5-羧基-3,4-二硝基吡唑钾和5-(肼基羰基)-3,4-二硝基吡唑钾

Fabrication of Energetic Metal-Organic Frameworks: Potassium 5-Carboxylato-3,4-Dinitropyrazole and Potassium 5-(Hydrazinecarbonyl)-3,4-Dinitropyrazole.

作者信息

Cao Yuteng, Wang Kangcai, Song Siwei, Liu Yu, Zhang Wenquan

机构信息

Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621000, China.

出版信息

Inorg Chem. 2023 Oct 23;62(42):17199-17206. doi: 10.1021/acs.inorgchem.3c02233. Epub 2023 Oct 12.

Abstract

Energetic materials have been widely applied in civil and military fields, whose thermostability is a key indicator to evaluate their safety levels under severe conditions. Herein, two novel energetic metal-organic frameworks (EMOFs), namely, and , were experimentally obtained and comprehensively characterized. The two EMOFs both possess unique three-dimensional (3D) coordination structures. With a high crystal density of 2.184 g·cm, EMOF exhibits outstandingly superior thermostability (onset: 290 °C; peak: 303 °C), while EMOF features onset and peak decomposition temperatures of 220 and 230 °C. The calculated energetic parameters of and are as follows: detonation velocity: 8731 m·s and 8294 m·s; detonation pressure: 26.5 and 26.4 GPa. Compared to EMOF , EMOF features high energy, excellent thermostability, and low mechanical sensitivities, which should be partly attributed to more plentiful coordination interactions. More coordination bonds are conducive to strengthening the EMOF framework, which needs much more energy to collapse, thereby maintaining higher thermal stability. The above favorable characteristics not only indicate EMOF has a promising future in applications as a thermostable explosive but also provide an effective and feasible strategy for developing novel heat-resistant energetic materials via reinforced frame structures of EMOFs.

摘要

含能材料已广泛应用于民用和军事领域,其热稳定性是评估其在严苛条件下安全水平的关键指标。在此,通过实验获得了两种新型含能金属有机框架材料(EMOFs),即 和 ,并对其进行了全面表征。这两种EMOFs均具有独特的三维(3D)配位结构。EMOF 的晶体密度高达2.184 g·cm,表现出极其优异的热稳定性(起始温度:290 °C;峰值温度:303 °C),而EMOF 的起始分解温度和峰值分解温度分别为220 °C和230 °C。 和 的计算含能参数如下:爆速:8731 m·s和8294 m·s;爆压:26.5 GPa和26.4 GPa。与EMOF 相比,EMOF 具有高能量、优异的热稳定性和低机械感度,这部分应归因于其更丰富的配位相互作用。更多的配位键有利于强化EMOF框架,使其坍塌需要更多能量,从而保持更高的热稳定性。上述良好特性不仅表明EMOF 在作为热稳定炸药的应用中具有广阔前景,还为通过强化EMOF框架结构开发新型耐热含能材料提供了有效可行的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验