Suppr超能文献

磁镊简介。

An Introduction to Magnetic Tweezers.

机构信息

LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.

出版信息

Methods Mol Biol. 2024;2694:375-401. doi: 10.1007/978-1-0716-3377-9_18.

Abstract

Magnetic tweezers are a single-molecule force and torque spectroscopy technique that enable the mechanical interrogation in vitro of biomolecules, such as nucleic acids and proteins. They use a magnetic field originating from either permanent magnets or electromagnets to attract a magnetic particle, thus stretching the tethering biomolecule. They nicely complement other force spectroscopy techniques such as optical tweezers and atomic force microscopy (AFM) as they operate as a very stable force clamp, enabling long-duration experiments over a very broad range of forces spanning from 10 fN to 1 nN, with 1-10 milliseconds time and sub-nanometer spatial resolution. Their simplicity, robustness, and versatility have made magnetic tweezers a key technique within the field of single-molecule biophysics, being broadly applied to study the mechanical properties of, e.g., nucleic acids, genome processing molecular motors, protein folding, and nucleoprotein filaments. Furthermore, magnetic tweezers allow for high-throughput single-molecule measurements by tracking hundreds of biomolecules simultaneously both in real-time and at high spatiotemporal resolution. Magnetic tweezers naturally combine with surface-based fluorescence spectroscopy techniques, such as total internal reflection fluorescence microscopy, enabling correlative fluorescence and force/torque spectroscopy on biomolecules. This chapter presents an introduction to magnetic tweezers including a description of the hardware, the theory behind force calibration, its spatiotemporal resolution, combining it with other techniques, and a (non-exhaustive) overview of biological applications.

摘要

磁镊是一种单分子力和扭矩光谱技术,可在体外对生物分子(如核酸和蛋白质)进行机械检测。它们使用来自永磁体或电磁铁的磁场来吸引磁性粒子,从而拉伸连接的生物分子。它们与其他力光谱技术(如光镊和原子力显微镜(AFM))很好地互补,因为它们作为一个非常稳定的力夹操作,可以在非常广泛的力范围内进行长时间实验,力跨度从 10 fN 到 1 nN,时间为 1-10 毫秒,空间分辨率为亚纳米。它们的简单性、鲁棒性和多功能性使磁镊成为单分子生物物理学领域的关键技术,广泛应用于研究核酸、基因组处理分子马达、蛋白质折叠和核蛋白丝等的机械性能。此外,磁镊通过同时实时和高时空分辨率跟踪数百个生物分子,允许进行高通量单分子测量。磁镊自然与基于表面的荧光光谱技术(如全内反射荧光显微镜)结合使用,能够在生物分子上进行相关的荧光和力/扭矩光谱学研究。本章介绍了磁镊的概述,包括硬件描述、力校准背后的理论、其时空分辨率、与其他技术的结合以及生物应用的(非详尽)概述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验