Fang Wei, Heller Eric R, Richardson Jeremy O
Department of Chemistry, Fudan University Shanghai 200438 P. R. China.
Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zürich Switzerland
Chem Sci. 2023 Sep 27;14(39):10777-10785. doi: 10.1039/d3sc03706a. eCollection 2023 Oct 11.
Thermally activated chemical reactions are typically understood in terms of overcoming potential-energy barriers. However, standard rate theories break down in the presence of a conical intersection (CI) because these processes are inherently nonadiabatic, invalidating the Born-Oppenheimer approximation. Moreover, CIs give rise to intricate nuclear quantum effects such as tunnelling and the geometric phase, which are neglected by standard trajectory-based simulations and remain largely unexplored in complex molecular systems. We present new semiclassical transition-state theories based on an extension of golden-rule instanton theory to describe nonadiabatic tunnelling through CIs and thus provide an intuitive picture for the reaction mechanism. We apply the method in conjunction with first-principles electronic-structure calculations to the electron transfer in the bis(methylene)-adamantyl cation. Our study reveals a strong competition between heavy-atom tunnelling and geometric-phase effects.
热激活化学反应通常是从克服势能垒的角度来理解的。然而,在存在锥形交叉点(CI)的情况下,标准速率理论会失效,因为这些过程本质上是非绝热的,这使得玻恩 - 奥本海默近似无效。此外,锥形交叉点会产生诸如隧穿和几何相位等复杂的核量子效应,这些效应被基于标准轨迹的模拟所忽略,并且在复杂分子系统中很大程度上仍未得到探索。我们基于黄金规则瞬子理论的扩展提出了新的半经典过渡态理论,以描述通过锥形交叉点的非绝热隧穿,从而为反应机制提供一个直观的图景。我们将该方法与第一性原理电子结构计算相结合,应用于双(亚甲基)-金刚烷基阳离子中的电子转移。我们的研究揭示了重原子隧穿和几何相位效应之间的强烈竞争。