Asencios Yvan J O, Yigit Nevzat, Wicht Thomas, Stöger-Pollach Michael, Lucrédio Alessandra F, Marcos Francielle C F, Assaf Elisabete M, Rupprechter Günther
Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/BC/01, 1060 Vienna, Austria.
Institute of Marine Sciences, Universidade Federal de São Paulo, R. Maria Máximo 168, Santos, SP 11030-100 Brazil.
Top Catal. 2023;66(19-20):1539-1552. doi: 10.1007/s11244-023-01822-7. Epub 2023 May 24.
Syngas can be produced from biomethane via Partial Oxidation of Methane (POM), being an attractive route since it is ecofriendly and sustainable. In this work, catalysts of Ni supported on MgO-ZrO solid solutions, prepared by a one-step polymerization method, were characterized by HRTEM/EDX, XRD, XPS, H-TPR, and in situ XRD. All catalysts, including Ni/ZrO and Ni/MgO as reference, were tested for POM (CH:O molar ratio 2, 750 ºC, 1 atm). NiO/MgO/ZrO contained two solid-solutions, MgO-ZrO and NiO-MgO, as revealed by XRD and XPS. Ni (30 wt%) supported on MgO-ZrO solid solution exhibited high methane conversion and hydrogen selectivity. However, depending on the MgO amount (0, 4, 20, 40, 100 molar percent) major differences in NiO reducibility, growth of Ni crystallite size during H reduction and POM, and in carbon deposition rates were observed. Interestingly, catalysts with lower MgO content achieved the highest CH conversion (~ 95%), high selectivity to H (1.7) and CO (0.8), and low carbon deposition rates (0.024 g .g h) with Ni4MgZr (4 mol% MgO) turning out to be the best catalyst. In situ XRD during POM indicated metallic Ni nanoparticles (average crystallite size of 31 nm), supported by MgO-ZrO solid solution, with small amounts of NiO-MgO being present as well. The presence of MgO also influenced the morphology of the carbon deposits, leading to filaments instead of amorphous carbon. A combustion-reforming mechanism is suggested and using a MgO-ZrO solid solution support strongly improves catalytic performance, which is attributed to effective O, CO and HO activation at the Ni/MgO-ZrO interface.
合成气可通过甲烷部分氧化(POM)由生物甲烷制得,这是一条颇具吸引力的途径,因为它环保且可持续。在这项工作中,采用一步聚合方法制备的负载在MgO-ZrO固溶体上的Ni催化剂,通过高分辨率透射电子显微镜/能谱仪(HRTEM/EDX)、X射线衍射(XRD)、X射线光电子能谱(XPS)、氢气程序升温还原(H-TPR)和原位XRD进行了表征。所有催化剂,包括作为参比的Ni/ZrO和Ni/MgO,都进行了POM测试(CH:O摩尔比为2,750 ºC,1个大气压)。XRD和XPS显示,NiO/MgO/ZrO包含两种固溶体,即MgO-ZrO和NiO-MgO。负载在MgO-ZrO固溶体上的Ni(30 wt%)表现出高甲烷转化率和氢气选择性。然而,根据MgO的含量(0、4、20、40、100摩尔百分比),观察到NiO还原度、H还原和POM过程中Ni微晶尺寸的增长以及碳沉积速率存在重大差异。有趣的是,MgO含量较低的催化剂实现了最高的CH转化率(约95%)、对H(1.7)和CO(0.8)的高选择性以及低碳沉积速率(0.024 g·g⁻¹·h⁻¹),其中Ni4MgZr(4 mol% MgO)被证明是最佳催化剂。POM过程中的原位XRD表明,由MgO-ZrO固溶体负载的金属Ni纳米颗粒(平均微晶尺寸为31 nm),同时也存在少量的NiO-MgO。MgO的存在也影响了碳沉积物的形态,导致形成丝状而非无定形碳。提出了一种燃烧重整机制,使用MgO-ZrO固溶体载体可显著提高催化性能,这归因于在Ni/MgO-ZrO界面处有效的O、CO和H₂O活化。