Maqbool Qaisar, Aharanwa Hamilton Uchenna, Stöger-Pollach Michael, Rupprechter Günther
Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC 1060 Vienna Austria
University Service Center for Transmission Electron Microscopy, TU Wien Stadionallee 2/057-02 1020 Vienna Austria.
Green Chem. 2025 Feb 7;27(10):2706-2722. doi: 10.1039/d4gc05217j. eCollection 2025 Mar 3.
Transforming hazardous and difficult-to-process waste materials, like spent Ni-MH batteries and aluminium foil, into nanocatalysts (NCts) provides a sustainable solution for resource management and reducing environmental impact. This study demonstrates a novel approach by extracting nickel sulfate (NiSO·HO) from battery waste and subsequently converting it into Ni(OH) hydrogel precursors using l-glutamic acid. Waste aluminium foil was processed into alumina (AlO), and combined with Ni(OH) to synthesize Ni/η-AlO NCts with 4% and 8% Ni loading. Characterization through XRD/SAED, STEM/EFTEM, and EELS revealed a disordered cubic structure of η-AlO, with well-dispersed Ni particles, making it effective for CO hydrogenation. The 8-Ni/η-AlO exhibited the best catalytic performance, with CH selectivity of 99.8% and space time yield (STY) of 80.3 mmol g h at 400 °C. The CO methanation mechanism over Ni/η-AlO NCts was further explored using DRIFTS aligned with GC + MS. The investigation suggested a preferential associative CO methanation pathway, involving sequential adsorption and hydrogenation of CO to hydrogen carbonates on Ni/η-AlO, and their transformation into formate and methoxy intermediates leading to methane. Finally, to complete the upcycling/recycling loop, the spent Ni/η-AlO NCts were recycled into Ni and Al precursors. These findings underscore the potential of upcycling waste materials for synthesizing sustainable, high-performance NCts, and offer insights into the CO methanation mechanism.
将废旧镍氢电池和铝箔等危险且难以处理的废料转化为纳米催化剂,为资源管理和减少环境影响提供了一种可持续的解决方案。本研究展示了一种新颖的方法,即从电池废料中提取硫酸镍(NiSO₄·H₂O),随后使用L-谷氨酸将其转化为氢氧化镍水凝胶前驱体。将废铝箔加工成氧化铝(Al₂O₃),并与氢氧化镍结合,合成镍负载量为4%和8%的Ni/η-Al₂O₃纳米催化剂。通过XRD/SAED、STEM/EFTEM和EELS表征发现,η-Al₂O₃具有无序立方结构,镍颗粒分散良好,对CO加氢反应有效。8%-Ni/η-Al₂O₃表现出最佳催化性能,在400℃时,CH₄选择性为99.8%,时空产率(STY)为80.3 mmol g⁻¹ h⁻¹。使用与GC + MS联用的DRIFTS进一步探索了Ni/η-Al₂O₃纳米催化剂上的CO甲烷化机理。研究表明,优先的缔合CO甲烷化途径涉及CO在Ni/η-Al₂O₃上依次吸附和加氢生成碳酸氢盐,然后转化为甲酸盐和甲氧基中间体,最终生成甲烷。最后,为了完成升级循环/回收循环,将用过的Ni/η-Al₂O₃纳米催化剂回收为镍和铝前驱体。这些发现强调了将废料升级循环用于合成可持续、高性能纳米催化剂的潜力,并为CO甲烷化机理提供了见解。