Suppr超能文献

将危险废物升级转化为用于CO甲烷化的高性能Ni/η-AlO催化剂。

Upcycling hazardous waste into high-performance Ni/η-AlO catalysts for CO methanation.

作者信息

Maqbool Qaisar, Aharanwa Hamilton Uchenna, Stöger-Pollach Michael, Rupprechter Günther

机构信息

Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC 1060 Vienna Austria

University Service Center for Transmission Electron Microscopy, TU Wien Stadionallee 2/057-02 1020 Vienna Austria.

出版信息

Green Chem. 2025 Feb 7;27(10):2706-2722. doi: 10.1039/d4gc05217j. eCollection 2025 Mar 3.

Abstract

Transforming hazardous and difficult-to-process waste materials, like spent Ni-MH batteries and aluminium foil, into nanocatalysts (NCts) provides a sustainable solution for resource management and reducing environmental impact. This study demonstrates a novel approach by extracting nickel sulfate (NiSO·HO) from battery waste and subsequently converting it into Ni(OH) hydrogel precursors using l-glutamic acid. Waste aluminium foil was processed into alumina (AlO), and combined with Ni(OH) to synthesize Ni/η-AlO NCts with 4% and 8% Ni loading. Characterization through XRD/SAED, STEM/EFTEM, and EELS revealed a disordered cubic structure of η-AlO, with well-dispersed Ni particles, making it effective for CO hydrogenation. The 8-Ni/η-AlO exhibited the best catalytic performance, with CH selectivity of 99.8% and space time yield (STY) of 80.3 mmol g h at 400 °C. The CO methanation mechanism over Ni/η-AlO NCts was further explored using DRIFTS aligned with GC + MS. The investigation suggested a preferential associative CO methanation pathway, involving sequential adsorption and hydrogenation of CO to hydrogen carbonates on Ni/η-AlO, and their transformation into formate and methoxy intermediates leading to methane. Finally, to complete the upcycling/recycling loop, the spent Ni/η-AlO NCts were recycled into Ni and Al precursors. These findings underscore the potential of upcycling waste materials for synthesizing sustainable, high-performance NCts, and offer insights into the CO methanation mechanism.

摘要

将废旧镍氢电池和铝箔等危险且难以处理的废料转化为纳米催化剂,为资源管理和减少环境影响提供了一种可持续的解决方案。本研究展示了一种新颖的方法,即从电池废料中提取硫酸镍(NiSO₄·H₂O),随后使用L-谷氨酸将其转化为氢氧化镍水凝胶前驱体。将废铝箔加工成氧化铝(Al₂O₃),并与氢氧化镍结合,合成镍负载量为4%和8%的Ni/η-Al₂O₃纳米催化剂。通过XRD/SAED、STEM/EFTEM和EELS表征发现,η-Al₂O₃具有无序立方结构,镍颗粒分散良好,对CO加氢反应有效。8%-Ni/η-Al₂O₃表现出最佳催化性能,在400℃时,CH₄选择性为99.8%,时空产率(STY)为80.3 mmol g⁻¹ h⁻¹。使用与GC + MS联用的DRIFTS进一步探索了Ni/η-Al₂O₃纳米催化剂上的CO甲烷化机理。研究表明,优先的缔合CO甲烷化途径涉及CO在Ni/η-Al₂O₃上依次吸附和加氢生成碳酸氢盐,然后转化为甲酸盐和甲氧基中间体,最终生成甲烷。最后,为了完成升级循环/回收循环,将用过的Ni/η-Al₂O₃纳米催化剂回收为镍和铝前驱体。这些发现强调了将废料升级循环用于合成可持续、高性能纳米催化剂的潜力,并为CO甲烷化机理提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8081/11826383/2c1b8215b083/d4gc05217j-f1.jpg

相似文献

1
Upcycling hazardous waste into high-performance Ni/η-AlO catalysts for CO methanation.
Green Chem. 2025 Feb 7;27(10):2706-2722. doi: 10.1039/d4gc05217j. eCollection 2025 Mar 3.
2
CO methanation over Ni/SiO-AlO catalysts: effect of Ba, La, and Ce addition.
RSC Adv. 2025 Apr 7;15(14):10958-10969. doi: 10.1039/d4ra08895f. eCollection 2025 Apr 4.
4
Impact of Sr Addition on Zirconia-Alumina-Supported Ni Catalyst for CO-Free CH Production via CO Methanation.
ACS Omega. 2024 Feb 14;9(8):9309-9320. doi: 10.1021/acsomega.3c08536. eCollection 2024 Feb 27.
5
Study on Methanation Performance of Biomass Gasification Syngas Based on a Ni/AlO Monolithic Catalyst.
ACS Omega. 2020 Oct 29;5(44):28597-28605. doi: 10.1021/acsomega.0c03536. eCollection 2020 Nov 10.
7
CO Activation and Hydrogenation on Cu-ZnO/AlO Nanorod Catalysts: An In Situ FTIR Study.
Nanomaterials (Basel). 2022 Jul 23;12(15):2527. doi: 10.3390/nano12152527.
8
CO methanation mechanism over Ni/YO: an diffuse reflectance infrared Fourier transform spectroscopic study.
Phys Chem Chem Phys. 2021 Mar 11;23(9):5551-5558. doi: 10.1039/d0cp06257j.
9
Ni nanocatalysts supported on mesoporous AlO-CeO for CO methanation at low temperature.
RSC Adv. 2020 Jan 10;10(4):2067-2072. doi: 10.1039/c9ra08967e. eCollection 2020 Jan 8.
10
Robust nickel silicate catalysts with high Ni loading for CO methanation.
Chem Asian J. 2021 Mar 15;16(6):678-689. doi: 10.1002/asia.202001384. Epub 2021 Feb 15.

本文引用的文献

1
Highly Stable Self-Cleaning Paints Based on Waste-Valorized PNC-Doped TiO Nanoparticles.
ACS Catal. 2024 Mar 15;14(7):4820-4834. doi: 10.1021/acscatal.3c06203. eCollection 2024 Apr 5.
2
Zr-Based MOF-545 Metal-Organic Framework Loaded with Highly Dispersed Small Size Ni Nanoparticles for CO Methanation.
ACS Appl Mater Interfaces. 2024 Mar 13;16(10):12509-12520. doi: 10.1021/acsami.3c18154. Epub 2024 Feb 28.
5
Partial Oxidation of Bio-methane over Nickel Supported on MgO-ZrO Solid Solutions.
Top Catal. 2023;66(19-20):1539-1552. doi: 10.1007/s11244-023-01822-7. Epub 2023 May 24.
6
Improving time-resolution and sensitivity of X-ray photoelectron spectroscopy of a powder catalyst by modulated excitation.
Chem Sci. 2023 May 30;14(27):7482-7491. doi: 10.1039/d3sc01274c. eCollection 2023 Jul 12.
7
Investigating the Potential of Electroless Nickel Plating for Fabricating Ultra-Porous Metal-Based Lattice Structures Using PolyHIPE Templates.
ACS Appl Mater Interfaces. 2023 Jun 28;15(25):30769-30779. doi: 10.1021/acsami.3c04637. Epub 2023 Jun 13.
8
A Review on the Adsorption Isotherms and Design Calculations for the Optimization of Adsorbent Mass and Contact Time.
ACS Omega. 2023 Apr 24;8(20):17407-17430. doi: 10.1021/acsomega.2c08155. eCollection 2023 May 23.
9
monitoring of a room temperature nanocomposite methanol sensor.
Catal Sci Technol. 2022 Dec 14;13(3):624-636. doi: 10.1039/d2cy01395a. eCollection 2023 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验