Suppr超能文献

全基因组DNA甲基化分析确定了MGMT启动子未甲基化的非G-CIMP胶质母细胞瘤中替莫唑胺反应的有效CpG特征:GPR81的MGMT依赖性作用

Genome-wide DNA methylation analysis identifies potent CpG signature for temzolomide response in non-G-CIMP glioblastomas with unmethylated MGMT promoter: MGMT-dependent roles of GPR81.

作者信息

Liang Bao-Bao, Wang Yu-Hong, Huang Jing-Jing, Lin Shuai, Mao Guo-Chao, Zhou Zhang-Jian, Yan Wan-Jun, Shan Chang-You, Wu Hui-Zi, Etcheverry Amandine, He Ya-Long, Liu Fang-Fang, Kang Hua-Feng, Yin An-An, Zhang Shu-Qun

机构信息

Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.

The Emergency Department, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China.

出版信息

CNS Neurosci Ther. 2024 Apr;30(4):e14465. doi: 10.1111/cns.14465. Epub 2023 Oct 13.

Abstract

PURPOSES

To identify potent DNA methylation candidates that could predict response to temozolomide (TMZ) in glioblastomas (GBMs) that do not have glioma-CpGs island methylator phenotype (G-CIMP) but have an unmethylated promoter of O-6-methylguanine-DNA methyltransferase (unMGMT).

METHODS

The discovery-validation approach was planned incorporating a series of G-CIMP-/unMGMT GBM cohorts with DNA methylation microarray data and clinical information, to construct multi-CpG prediction models. Different bioinformatic and experimental analyses were performed for biological exploration.

RESULTS

By analyzing discovery sets with radiotherapy (RT) plus TMZ versus RT alone, we identified a panel of 64 TMZ efficacy-related CpGs, from which a 10-CpG risk signature was further constructed. Both the 64-CpG panel and the 10-CpG risk signature were validated showing significant correlations with overall survival of G-CIMP-/unMGMT GBMs when treated with RT/TMZ, rather than RT alone. The 10-CpG risk signature was further observed for aiding TMZ choice by distinguishing differential outcomes to RT/TMZ versus RT within each risk subgroup. Functional studies on GPR81, the gene harboring one of the 10 CpGs, indicated its distinct impacts on TMZ resistance in GBM cells, which may be dependent on the status of MGMT expression.

CONCLUSIONS

The 64 TMZ efficacy-related CpGs and in particular the 10-CpG risk signature may serve as promising predictive biomarker candidates for guiding optimal usage of TMZ in G-CIMP-/unMGMT GBMs.

摘要

目的

在不具有胶质瘤CpG岛甲基化表型(G-CIMP)但具有O-6-甲基鸟嘌呤-DNA甲基转移酶启动子未甲基化(unMGMT)的胶质母细胞瘤(GBM)中,鉴定可预测对替莫唑胺(TMZ)反应的有效DNA甲基化候选物。

方法

计划采用发现-验证方法,纳入一系列具有DNA甲基化微阵列数据和临床信息的G-CIMP-/unMGMT GBM队列,以构建多CpG预测模型。进行了不同的生物信息学和实验分析以进行生物学探索。

结果

通过分析放疗(RT)联合TMZ与单纯RT的发现集,我们鉴定出一组64个与TMZ疗效相关的CpG,从中进一步构建了一个10-CpG风险特征。64-CpG组和10-CpG风险特征均得到验证,显示与接受RT/TMZ而非单纯RT治疗的G-CIMP-/unMGMT GBM的总生存期显著相关。通过区分每个风险亚组中RT/TMZ与RT的不同结果,进一步观察到10-CpG风险特征有助于TMZ的选择。对包含10个CpG之一的基因GPR81的功能研究表明,它对GBM细胞中TMZ耐药性有不同影响,这可能取决于MGMT表达状态。

结论

64个与TMZ疗效相关的CpG,特别是10-CpG风险特征,可能是有前景的预测生物标志物候选物,用于指导G-CIMP-/unMGMT GBM中TMZ的最佳使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6355/11017469/59463a9975f0/CNS-30-e14465-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验