Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
School of Pharmacy, Shanxi Medical University, Jinzhong, 030619, Shanxi, China.
Environ Sci Pollut Res Int. 2023 Nov;30(52):112462-112473. doi: 10.1007/s11356-023-30183-7. Epub 2023 Oct 13.
Building Z-scheme heterojunctions with an electron bridge is a favored function for increasing photocatalytic activity. A facile approach for preparing g-CN/Ag@AgCl ternary heterojunctions by co-precipitation and photoreduction was established in this work. First, via co-precipitation, AgCl was modified on the surface of g-CN to create a broad contact area between AgCl and g-CN. The AgCl is then reduced to Ag via an in-situ photoreduction technique, resulting in the formation of a ternary composite. The experimental results showed that when g-CN modified 25% of the Ag@AgCl, that is, g-CN/Ag@AgCl-25 had the best photocatalytic performance, 94.9% of TC was degraded within 240 min, and the reaction rate to TC was 0.1214 min, which was 4.49 times and 8.12 times higher than that of g-CN and Ag/AgCl, respectively. The excellent photocatalytic performance of g-CN/Ag@AgCl is attributed to the LSPR effect of Ag NPs and O-doping g-CN, which broadens the absorbance performance of g-CN, the establishment of Z-type heterojunctions between AgCl NPs and g-CN NSs and Ag NPs as an electron transport bridge accelerate the photogenerated electrons transfer between AgCl and g-CN.
构建具有电子桥的 Z 型异质结是提高光催化活性的一种常用方法。本工作通过共沉淀和光还原法建立了一种简便的制备 g-CN/Ag@AgCl 三元异质结的方法。首先,通过共沉淀,在 g-CN 表面修饰 AgCl,在 AgCl 和 g-CN 之间形成宽的接触面积。然后通过原位光还原技术将 AgCl 还原为 Ag,形成三元复合材料。实验结果表明,当 g-CN 修饰 25%的 Ag@AgCl,即 g-CN/Ag@AgCl-25 时,具有最佳的光催化性能,在 240 min 内可降解 94.9%的 TC,反应速率为 0.1214 min,分别是 g-CN 和 Ag/AgCl 的 4.49 倍和 8.12 倍。g-CN/Ag@AgCl 的优异光催化性能归因于 Ag NPs 的 LSPR 效应和 O 掺杂 g-CN,这拓宽了 g-CN 的吸收性能,AgCl NPs 和 g-CN NSs 之间建立了 Z 型异质结,Ag NPs 作为电子传输桥加速了光生电子在 AgCl 和 g-CN 之间的转移。