Materials Science and Sensor Application, Central Scientific Instruments Organisation, Chandigarh, 160030, India.
School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Environ Sci Pollut Res Int. 2023 Nov;30(52):112290-112306. doi: 10.1007/s11356-023-30257-6. Epub 2023 Oct 13.
The coupling of different oxide materials in a nanohybrid enables the customization of their optical and charge transport properties, leading to improved interfacial charge segregation and migration. In this study, BiVO/WO (BVW), a sunlight-driven photocatalyst with distinct mole ratios was synthesized via a facile hydrothermal approach. The resultant catalyst exhibits a nanorods shape morphology decorated onto dendrite-like matrix and is studied for photocatalytic elimination of tetracycline (TC) and photoelectrocatalytic (PEC) H production. The effect of illumination time, solution pH, photocatalyst concentration, and mole ratios of BiVO to WO on the photocatalytic abatement of TC were tested sequentially as effective operating factors. Under optimal condition, 3:1 BiVO:WO (31BVW) nanohybrid demonstrated a maximum degradation efficacy of 96.2% (rate constant ~0.0241 min), which is much better than its individual components and commercial TiO-P25 (50.9%). The resultant by-products of TC decomposition were analyzed using GC-MS to explain the degradation mechanism. Moreover, as a photoanode, 31BVW showed a high photocurrent density of 0.64 mA/cm at 1.23 V vs RHE and a steady photocurrent for ~6 h under chronoamperometry study at1.23 V vs RHE. However, bare BiVO and WO exhibited the photocurrent density of 0.001 mA/cm, and 0.015 mA/cm, respectively at 1.23 V vs RHE. The Mott-Schottky analysis of 31BVW confirms their n-type behavior, with a calculated flat band potential of -0.067 V. The hydrogen production rate was theoretically calculated as 4.56 mmolcm s from chronoamperometric measurements. The photocatalyst's efficacy in TC degradation was further established via its reusability upto 7 cycles. Post degradation characterization of catalyst confirms its stability in lieu of practical usage. Comparative studies with existing literature revealed the superiority of reported photocatalysts in both applications. Overall, the binary BVW photocatalyst shows great potential for removing detrimental contaminants as well as H production via PEC water splitting due to efficient charge separation, reduced recombination, high surface area, and widen absorption window of the nanohybrid.
不同氧化物材料在纳米杂化中的耦合能够定制其光学和电荷输运性质,从而改善界面电荷分离和迁移。在这项研究中,通过简便的水热法合成了具有不同摩尔比的 BiVO/WO(BVW),一种阳光驱动的光催化剂。所得催化剂呈纳米棒形状形态,装饰在树枝状基体上,并研究了其对四环素(TC)的光催化消除和光电催化(PEC)H 生产。依次测试了光照时间、溶液 pH 值、光催化剂浓度以及 BiVO 与 WO 的摩尔比对 TC 光催化消除的影响,作为有效操作因素。在最佳条件下,3:1 BiVO:WO(31BVW)纳米杂化物表现出 96.2%的最大降解效率(速率常数~0.0241 min),明显优于其各组分和商业 TiO-P25(50.9%)。使用 GC-MS 分析 TC 分解的副产物以解释降解机制。此外,作为光阳极,31BVW 在 1.23 V vs RHE 下的chronoamperometry 研究中具有 0.64 mA/cm 的高光电流密度和约 6 小时的稳定光电流。然而,裸 BiVO 和 WO 的光电流密度分别为 0.001 mA/cm 和 0.015 mA/cm。31BVW 的 Mott-Schottky 分析证实了其 n 型行为,计算出的平带电位为-0.067 V。根据 chronoamperometry 测量,理论上计算出的氢气产生速率为 4.56 mmolcm s。通过 7 次循环的可重复使用性进一步证实了光催化剂在 TC 降解中的功效。催化剂降解后的表征证实了其在实际应用中的稳定性。与现有文献的比较研究表明,所报道的光催化剂在这两种应用中的性能都具有优越性。总体而言,由于高效的电荷分离、减少的复合、高表面积和纳米杂化的宽吸收窗口,二元 BVW 光催化剂在去除有害污染物以及通过 PEC 水分解产生 H 方面具有很大的潜力。