Suppr超能文献

利用结构信息和深度学习提高青光眼视野测试的准确性和速度。

Improving the Accuracy and Speed of Visual Field Testing in Glaucoma With Structural Information and Deep Learning.

机构信息

City, University of London, Optometry and Visual Sciences, London, UK.

NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.

出版信息

Transl Vis Sci Technol. 2023 Oct 3;12(10):10. doi: 10.1167/tvst.12.10.10.

Abstract

PURPOSE

To assess the performance of a perimetric strategy using structure-function predictions from a deep learning (DL) model.

METHODS

Visual field test-retest data from 146 eyes (75 patients) with glaucoma with (median [5th-95th percentile]) 10 [7, 10] tests per eye were used. Structure-function predictions were generated with a previously described DL model using cicumpapillary optical coherence tomography (OCT) scans. Structurally informed prior distributions were built grouping the observed measured sensitivities for each predicted value and recalculated for each subject with a leave-one-out approach. A zippy estimation by sequential testing (ZEST) strategy was used for the simulations (1000 per eye). Ground-truth sensitivities for each eye were the medians of the test-retest values. Two variations of ZEST were compared in terms of speed (average total number of presentations [NP] per eye) and accuracy (average mean absolute error [MAE] per eye), using either a combination of normal and abnormal thresholds (ZEST) or the calculated structural distributions (S-ZEST) as prior information. Two additional versions of these strategies employing spatial correlations were tested.

RESULTS

S-ZEST was significantly faster, with a mean average NP of 213.87 (SD = 28.18), than ZEST, with a mean average NP of 255.65 (SD = 50.27) (P < 0.001). The average MAE was smaller for S-ZEST (1.98; SD = 2.37) than ZEST (2.43; SD = 2.69) (P < 0.001). Spatial correlations further improved both strategies (P < 0.001), but the differences between ZEST and S-ZEST remained significant (P < 0.001).

CONCLUSIONS

DL structure-function predictions can significantly improve perimetric tests.

TRANSLATIONAL RELEVANCE

DL structure-function predictions from clinically available OCT scans can improve perimetry in glaucoma patients.

摘要

目的

评估一种使用深度学习(DL)模型的结构-功能预测的视野策略的性能。

方法

使用来自 146 只眼(75 例患者)的青光眼的视野测试-复测数据,每只眼的测试中位数(5 至 95 百分位数)为 10 [7,10]。使用先前描述的使用环周视网膜光相干断层扫描(OCT)扫描的 DL 模型生成结构-功能预测。使用观察到的测量灵敏度为每个预测值分组构建结构信息先验分布,并使用单样本外推方法为每个受试者重新计算。使用顺序测试的快速估计(Zippy estimation by sequential testing,ZEST)策略进行模拟(每只眼 1000 次)。每只眼的真实灵敏度是测试-复测值的中位数。比较了两种 ZEST 变体的速度(每只眼的平均总呈现次数[NP])和准确性(每只眼的平均平均绝对误差[MAE]),一种变体使用正常和异常阈值的组合(ZEST),另一种变体使用计算出的结构分布(S-ZEST)作为先验信息。测试了这两种策略的两个额外的使用空间相关性的版本。

结果

S-ZEST 的速度明显更快,平均平均 NP 为 213.87(SD = 28.18),而 ZEST 的平均平均 NP 为 255.65(SD = 50.27)(P < 0.001)。S-ZEST 的平均 MAE 较小(1.98;SD = 2.37),而 ZEST 的平均 MAE 较大(2.43;SD = 2.69)(P < 0.001)。空间相关性进一步改善了这两种策略(P < 0.001),但 ZEST 和 S-ZEST 之间的差异仍然显著(P < 0.001)。

结论

DL 结构-功能预测可以显著改善视野检查。

翻译

翻译后保留了原文的标点符号和换行格式,以便于阅读。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/561a/10587851/615f8b875057/tvst-12-10-10-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验