通过控制精神分裂症的基因组风险来研究大脑中基因共表达网络结构的性状变异性。

Investigating trait variability of gene co-expression network architecture in brain by controlling for genomic risk of schizophrenia.

机构信息

Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland United States of America.

Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy.

出版信息

PLoS Genet. 2023 Oct 13;19(10):e1010989. doi: 10.1371/journal.pgen.1010989. eCollection 2023 Oct.

Abstract

The effect of schizophrenia (SCZ) genetic risk on gene expression in brain remains elusive. A popular approach to this problem has been the application of gene co-expression network algorithms (e.g., WGCNA). To improve reliability with this method it is critical to remove unwanted sources of variance while also preserving biological signals of interest. In this WCGNA study of RNA-Seq data from postmortem prefrontal cortex (78 neurotypical donors, EUR ancestry), we tested the effects of SCZ genetic risk on co-expression networks. Specifically, we implemented a novel design in which gene expression was adjusted by linear regression models to preserve or remove variance explained by biological signal of interest (GWAS genomic scores for SCZ risk-(GS-SCZ), and genomic scores- GS of height (GS-Ht) as a negative control), while removing variance explained by covariates of non-interest. We calculated co-expression networks from adjusted expression (GS-SCZ and GS-Ht preserved or removed), and consensus between them (representative of a "background" network free of genomic scores effects). We then tested the overlap between GS-SCZ preserved modules and background networks reasoning that modules with reduced overlap would be most affected by GS-SCZ biology. Additionally, we tested these modules for convergence of SCZ risk (i.e., enrichment in PGC3 SCZ GWAS priority genes, enrichment in SCZ risk heritability and relevant biological ontologies. Our results highlight key aspects of GS-SCZ effects on brain co-expression networks, specifically: 1) preserving/removing SCZ genetic risk alters the co-expression modules; 2) biological pathways enriched in modules affected by GS-SCZ implicate processes of transcription, translation and metabolism that converge to influence synaptic transmission; 3) priority PGC3 SCZ GWAS genes and SCZ risk heritability are enriched in modules associated with GS-SCZ effects. Overall, our results indicate that gene co-expression networks that selectively integrate information about genetic risk can reveal novel combinations of biological pathways involved in schizophrenia.

摘要

精神分裂症 (SCZ) 遗传风险对大脑基因表达的影响仍然难以捉摸。解决这个问题的一种流行方法是应用基因共表达网络算法(例如 WGCNA)。为了提高这种方法的可靠性,去除不需要的方差源的同时保留感兴趣的生物信号至关重要。在这项使用死后前额皮质 (78 位神经典型供体,EUR 血统) 的 RNA-Seq 数据的 WCGNA 研究中,我们测试了 SCZ 遗传风险对共表达网络的影响。具体来说,我们实施了一种新的设计,其中通过线性回归模型调整基因表达,以保留或去除由感兴趣的生物信号(SCZ 风险的全基因组关联研究 (GWAS) 基因组评分 (GS-SCZ) 和身高的基因组评分 (GS-Ht) 作为阴性对照)解释的方差,同时去除由非感兴趣的协变量解释的方差。我们从调整后的表达 (GS-SCZ 和 GS-Ht 保留或去除) 计算共表达网络,并从它们之间的共识 (代表没有基因组评分影响的“背景”网络) 计算共表达网络。然后,我们测试了 GS-SCZ 保留模块与背景网络之间的重叠,我们推断重叠减少的模块最受 GS-SCZ 生物学的影响。此外,我们还测试了这些模块是否存在 SCZ 风险的收敛性(即,PGC3 SCZ GWAS 优先基因的富集、SCZ 风险遗传力和相关生物学本体论的富集)。我们的结果突出了 GS-SCZ 对大脑共表达网络影响的几个关键方面,具体包括:1) 保留/去除 SCZ 遗传风险会改变共表达模块;2) 在受 GS-SCZ 影响的模块中富集的生物学途径涉及转录、翻译和代谢,这些过程汇聚起来影响突触传递;3) PGC3 SCZ GWAS 优先基因和 SCZ 风险遗传力在与 GS-SCZ 效应相关的模块中富集。总体而言,我们的结果表明,选择性整合遗传风险信息的基因共表达网络可以揭示涉及精神分裂症的生物学途径的新组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64bb/10599557/c6d919ded796/pgen.1010989.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索