Lin Sen, Mengaldo Gianmarco, Maulik Romit
Department of Mathematics, University of Houston, Houston, Texas 77004, USA.
Department of Mechanical Engineering, 9 Engineering Drive 1, 07-08 Block EA, Singapore 117575.
Chaos. 2023 Oct 1;33(10). doi: 10.1063/5.0160312.
The detection of anomalies or transitions in complex dynamical systems is of critical importance to various applications. In this study, we propose the use of machine learning to detect changepoints for high-dimensional dynamical systems. Here, changepoints indicate instances in time when the underlying dynamical system has a fundamentally different characteristic-which may be due to a change in the model parameters or due to intermittent phenomena arising from the same model. We propose two complementary approaches to achieve this, with the first devised using arguments from probabilistic unsupervised learning and the latter devised using supervised deep learning. To accelerate the deployment of transition detection algorithms in high-dimensional dynamical systems, we introduce dimensionality reduction techniques. Our experiments demonstrate that transitions can be detected efficiently, in real-time, for the two-dimensional forced Kolmogorov flow and the Rössler dynamical system, which are characterized by anomalous regimes in phase space where dynamics are perturbed off the attractor at potentially uneven intervals. Finally, we also demonstrate how variations in the frequency of detected changepoints may be utilized to detect a significant modification to the underlying model parameters by utilizing the Lorenz-63 dynamical system.
在复杂动力系统中检测异常或转变对各种应用至关重要。在本研究中,我们提议使用机器学习来检测高维动力系统的变点。在此,变点表示基础动力系统具有根本不同特征的时刻——这可能是由于模型参数的变化,或者是由于同一模型产生的间歇性现象。我们提出两种互补方法来实现这一点,第一种方法是基于概率无监督学习的思路设计的,第二种方法是基于监督深度学习设计的。为了加速高维动力系统中转变检测算法的部署,我们引入了降维技术。我们的实验表明,对于二维强迫柯尔莫哥洛夫流和罗斯勒动力系统,可以实时高效地检测到转变,这两个系统在相空间中具有异常区域,动力学在这些区域以潜在不均匀的间隔从吸引子上受到扰动。最后,我们还展示了如何利用检测到的变点频率的变化,通过利用洛伦兹 - 63动力系统来检测基础模型参数的重大修改。