Suppr超能文献

通过深度学习对动力系统进行建模。

Modeling of dynamical systems through deep learning.

作者信息

Rajendra P, Brahmajirao V

机构信息

Department of Mathematics CMR Institute of Technology, Bengaluru, India.

School of Biotechnology MGNIRSA, D.S.R. Foundation, Hyderabad, India.

出版信息

Biophys Rev. 2020 Nov 22;12(6):1311-20. doi: 10.1007/s12551-020-00776-4.

Abstract

This review presents a modern perspective on dynamical systems in the context of current goals and open challenges. In particular, our review focuses on the key challenges of discovering dynamics from data and finding data-driven representations that make nonlinear systems amenable to linear analysis. We explore various challenges in modern dynamical systems, along with emerging techniques in data science and machine learning to tackle them. The two chief challenges are (1) nonlinear dynamics and (2) unknown or partially known dynamics. Machine learning is providing new and powerful techniques for both challenges. Dimensionality reduction methods are used for projecting dynamical methods in reduced form, and these methods perform computational efficiency on real-world data. Data-driven models drive to discover the governing equations and give laws of physics. The identification of dynamical systems through deep learning techniques succeeds in inferring physical systems. Machine learning provides advanced new and powerful algorithms for nonlinear dynamics. Advanced deep learning methods like autoencoders, recurrent neural networks, convolutional neural networks, and reinforcement learning are used in modeling of dynamical systems.

摘要

本综述从当前目标和开放挑战的角度,对动力系统提出了一种现代观点。特别是,我们的综述聚焦于从数据中发现动力学以及找到使非线性系统适用于线性分析的数据驱动表示这两个关键挑战。我们探讨了现代动力系统中的各种挑战,以及数据科学和机器学习中用于应对这些挑战的新兴技术。两个主要挑战是:(1)非线性动力学和(2)未知或部分已知的动力学。机器学习为这两个挑战都提供了新的强大技术。降维方法用于以简化形式投影动力学方法,这些方法在处理实际数据时具有计算效率。数据驱动模型致力于发现控制方程并给出物理定律。通过深度学习技术识别动力系统成功地推断出物理系统。机器学习为非线性动力学提供了先进的新的强大算法。像自动编码器、循环神经网络、卷积神经网络和强化学习等先进的深度学习方法被用于动力系统建模。

相似文献

1
Modeling of dynamical systems through deep learning.通过深度学习对动力系统进行建模。
Biophys Rev. 2020 Nov 22;12(6):1311-20. doi: 10.1007/s12551-020-00776-4.
4
Learning dynamical systems from data: An introduction to physics-guided deep learning.从数据中学习动力系统:物理引导深度学习导论。
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311808121. doi: 10.1073/pnas.2311808121. Epub 2024 Jun 24.
10
Data-driven discovery of coordinates and governing equations.数据驱动的坐标和控制方程的发现。
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22445-22451. doi: 10.1073/pnas.1906995116. Epub 2019 Oct 21.

本文引用的文献

4
Model selection for hybrid dynamical systems via sparse regression.基于稀疏回归的混合动态系统模型选择
Proc Math Phys Eng Sci. 2019 Mar;475(2223):20180534. doi: 10.1098/rspa.2018.0534. Epub 2019 Mar 6.
7
Data-driven discovery of partial differential equations.基于数据驱动的偏微分方程发现。
Sci Adv. 2017 Apr 26;3(4):e1602614. doi: 10.1126/sciadv.1602614. eCollection 2017 Apr.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验