Suppr超能文献

深度学习在二维超声心动图中自动测量左心室流出道直径。

Deep learning for automated left ventricular outflow tract diameter measurements in 2D echocardiography.

机构信息

University of Oslo, Oslo, Norway.

Oslo University Hospital, Rikshospitalet, Oslo, Norway.

出版信息

Cardiovasc Ultrasound. 2023 Oct 13;21(1):19. doi: 10.1186/s12947-023-00317-5.

Abstract

BACKGROUND

Measurement of the left ventricular outflow tract diameter (LVOTd) in echocardiography is a common source of error when used to calculate the stroke volume. The aim of this study is to assess whether a deep learning (DL) model, trained on a clinical echocardiographic dataset, can perform automatic LVOTd measurements on par with expert cardiologists.

METHODS

Data consisted of 649 consecutive transthoracic echocardiographic examinations of patients with coronary artery disease admitted to a university hospital. 1304 LVOTd measurements in the parasternal long axis (PLAX) and zoomed parasternal long axis views (ZPLAX) were collected, with each patient having 1-6 measurements per examination. Data quality control was performed by an expert cardiologist, and spatial geometry data was preserved for each LVOTd measurement to convert DL predictions into metric units. A convolutional neural network based on the U-Net was used as the DL model.

RESULTS

The mean absolute LVOTd error was 1.04 (95% confidence interval [CI] 0.90-1.19) mm for DL predictions on the test set. The mean relative LVOTd errors across all data subgroups ranged from 3.8 to 5.1% for the test set. Generally, the DL model had superior performance on the ZPLAX view compared to the PLAX view. DL model precision for patients with repeated LVOTd measurements had a mean coefficient of variation of 2.2 (95% CI 1.6-2.7) %, which was comparable to the clinicians for the test set.

CONCLUSION

DL for automatic LVOTd measurements in PLAX and ZPLAX views is feasible when trained on a limited clinical dataset. While the DL predicted LVOTd measurements were within the expected range of clinical inter-observer variability, the robustness of the DL model requires validation on independent datasets. Future experiments using temporal information and anatomical constraints could improve valvular identification and reduce outliers, which are challenges that must be addressed before clinical utilization.

摘要

背景

在超声心动图中测量左心室流出道直径(LVOTd)是计算心排量时常见的误差源。本研究旨在评估深度学习(DL)模型,基于临床超声心动数据集进行训练,能否与专家心脏病学家一样进行自动 LVOTd 测量。

方法

数据来自一家大学医院因冠心病住院的 649 例连续经胸超声心动图检查。收集了胸骨旁长轴(PLAX)和放大胸骨旁长轴(ZPLAX)视图中的 1304 次 LVOTd 测量值,每个患者每次检查有 1-6 次测量值。由专家心脏病学家进行数据质量控制,并为每个 LVOTd 测量值保留空间几何数据,以将 DL 预测值转换为公制单位。使用基于 U-Net 的卷积神经网络作为 DL 模型。

结果

DL 在测试集上对 LVOTd 的平均绝对预测误差为 1.04(95%置信区间 [CI] 0.90-1.19)mm。在所有数据亚组中,DL 模型对测试集的平均相对 LVOTd 误差在 3.8%至 5.1%之间。一般来说,与胸骨旁长轴视图相比,DL 模型在放大胸骨旁长轴视图上的性能更优。对于有重复 LVOTd 测量值的患者,DL 模型的精度具有 2.2%(95%CI 1.6-2.7)%的平均变异系数,与测试集的临床医生相当。

结论

当基于有限的临床数据集进行训练时,深度学习可用于自动测量胸骨旁长轴和放大胸骨旁长轴视图中的 LVOTd。虽然 DL 预测的 LVOTd 测量值在临床观察者间变异性的预期范围内,但 DL 模型的稳健性需要在独立数据集上进行验证。未来的实验可以使用时间信息和解剖约束来提高瓣膜识别能力并减少异常值,这是在临床应用之前必须解决的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验