Funderburk Karen, Bang-Christensen Sara R, Miller Brendan F, Tan Hua, Margolin Gennady, Petrykowska Hanna M, Baugher Catherine, Farney S Katie, Grimm Sara A, Jameel Nader, Holland David O, Altman Naomi S, Elnitski Laura
Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Integrative Bioinformatics Support Group, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA.
Cancers (Basel). 2023 Oct 1;15(19):4826. doi: 10.3390/cancers15194826.
The ability to detect several types of cancer using a non-invasive, blood-based test holds the potential to revolutionize oncology screening. We mined tumor methylation array data from the Cancer Genome Atlas (TCGA) covering 14 cancer types and identified two novel, broadly-occurring methylation markers at and . To evaluate their performance as a generalized blood-based screening approach, along with our previously reported methylation biomarker, , we rigorously assessed each marker individually or combined. Utilizing TCGA methylation data and applying logistic regression models within each individual cancer type, we found that the three-marker combination significantly increased the average area under the ROC curve (AUC) across the 14 tumor types compared to single markers ( = 1.158 × 10; Friedman test). Furthermore, we simulated dilutions of tumor DNA into healthy blood cell DNA and demonstrated increased AUC of combined markers across all dilution levels. Finally, we evaluated assay performance in bisulfite sequenced DNA from patient tumors and plasma, including early-stage samples. When combining all three markers, the assay correctly identified nine out of nine lung cancer plasma samples. In patient plasma from hepatocellular carcinoma, alone yielded the highest combined sensitivity and specificity values averaging 68% and 72%, whereas multiple markers could achieve higher sensitivity or specificity, but not both. Altogether, this study presents a comprehensive pipeline for the identification, testing, and validation of multi-cancer methylation biomarkers with a considerable potential for detecting a broad range of cancer types in patient blood samples.
使用非侵入性的血液检测来检测多种类型癌症的能力,有可能彻底改变肿瘤学筛查。我们挖掘了来自癌症基因组图谱(TCGA)涵盖14种癌症类型的肿瘤甲基化阵列数据,并在[具体位置1]和[具体位置2]鉴定出两种新的、广泛存在的甲基化标记。为了评估它们作为一种通用的基于血液的筛查方法的性能,连同我们之前报道的甲基化生物标志物[具体名称],我们对每个标记单独或组合进行了严格评估。利用TCGA甲基化数据并在每种癌症类型中应用逻辑回归模型,我们发现与单个标记相比,三标记组合在14种肿瘤类型中显著增加了ROC曲线下的平均面积(AUC)(P = 1.158 × 10;Friedman检验)。此外,我们将肿瘤DNA稀释到健康血细胞DNA中进行模拟,并证明在所有稀释水平下组合标记的AUC都有所增加。最后,我们评估了在来自患者肿瘤和血浆(包括早期样本)的亚硫酸氢盐测序DNA中的检测性能。当组合所有三个标记时,该检测正确识别出9个肺癌血浆样本中的9个。在肝细胞癌患者血浆中,单独的[具体标记]产生了最高的综合敏感性和特异性值,平均分别为68%和72%,而多个标记可以实现更高的敏感性或特异性,但不能同时实现两者。总之,这项研究提出了一个用于多癌症甲基化生物标志物的鉴定、测试和验证的综合流程,在检测患者血液样本中的多种癌症类型方面具有相当大的潜力。