Kim Chulsoo, Hong Byungyou, Choi Wonseok
Department of Electrical Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Nanomaterials (Basel). 2023 Sep 22;13(19):2617. doi: 10.3390/nano13192617.
Surface-enhanced Raman scattering (SERS) is a highly sensitive technique for detecting DNA, proteins, and single molecules. The design of SERS substrates plays a crucial role, with the density of hotspots being a key factor in enhancing Raman spectra. In this study, we employed carbon nanowall (CNW) as the nanostructure and embedded plasmonic nanoparticles (PNPs) to increase hotspot density, resulting in robust Raman signals. To enhance the CNW's performance, we functionalized it via oxygen plasma and embedded silver nanoparticles (Ag NPs). The authors evaluated the substrate using rhodamine 6G (R6G) as a model target molecule, ranging in concentration from 10 M to 10 M for a 4 min exposure. Our analysis confirmed a proportional increase in Raman signal intensity with an increase in concentration. The CNW's large specific surface area and graphene domains provide dense hotspots and high charge mobility, respectively, contributing to both the electromagnetic mechanism (EM) and the chemical mechanism (CM) of SERS.
表面增强拉曼散射(SERS)是一种用于检测DNA、蛋白质和单分子的高灵敏度技术。SERS基底的设计起着至关重要的作用,热点密度是增强拉曼光谱的关键因素。在本研究中,我们采用碳纳米壁(CNW)作为纳米结构并嵌入等离子体纳米颗粒(PNP)以增加热点密度,从而产生强大的拉曼信号。为了提高CNW的性能,我们通过氧等离子体对其进行功能化处理并嵌入银纳米颗粒(Ag NPs)。作者使用罗丹明6G(R6G)作为模型目标分子评估了该基底,在4分钟的暴露时间内浓度范围为10⁻⁶ M至10⁻¹² M。我们的分析证实,拉曼信号强度随浓度增加而成比例增加。CNW的大比表面积和石墨烯域分别提供了密集的热点和高电荷迁移率,这有助于SERS的电磁机制(EM)和化学机制(CM)。