Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil.
Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Co. Westmeath, N37HD68, Ireland.
Pharmacol Rep. 2023 Dec;75(6):1597-1609. doi: 10.1007/s43440-023-00537-6. Epub 2023 Oct 14.
Glioblastoma is a severe brain tumor that requires aggressive treatment involving surgery, radiotherapy, and chemotherapy, offering a survival rate of only 15 months. Fortunately, recent nanotechnology progress has enabled novel approaches and, alongside ferrocenes' unique properties of cytotoxicity, sensitization, and interaction with reactive oxygen species, have brought new possibilities to complement chemotherapy in nanocarrier systems, enhancing treatment results.
In this work, we developed and characterized a temozolomide-loaded nanoemulsion and evaluated its cytotoxic potential in combination with ferrocene in the temozolomide-resistant T98G and temozolomide-sensitive U87 cell lines. The effects of the treatments were assessed through acute assays of cell viability, cell death, mitochondrial alterations, and a treatment protocol simulation based on different two-cycle regimens.
Temozolomide nanoemulsion showed a z-average diameter of 173.37 ± 0.86 nm and a zeta potential of - 6.53 ± 1.13 mV. Physicochemical characterization revealed that temozolomide is probably associated with nanoemulsion droplets instead of being entrapped within the nanostructure, allowing a rapid drug release. In combination with ferrocene, temozolomide nanoemulsion reduced glioblastoma cell viability in both acute and two-cycle regimen assays. The combined treatment approach also reversed T98G's temozolomide-resistant profile by altering the mitochondrial membrane potential of the cells, thus increasing reactive oxygen species generation, and ultimately inducing cell death.
Altogether, our results indicate that using nanoemulsion containing temozolomide in combination with ferrocene is an effective approach to improve glioblastoma therapy outcomes.
胶质母细胞瘤是一种严重的脑肿瘤,需要积极的治疗,包括手术、放疗和化疗,但患者的生存率仅为 15 个月。幸运的是,最近的纳米技术进展为我们提供了新的方法,同时铁的独特细胞毒性、增敏作用以及与活性氧物质的相互作用,为纳米载体系统中的化疗提供了新的可能性,从而提高了治疗效果。
在这项工作中,我们开发并表征了一种负载替莫唑胺的纳米乳剂,并评估了其与铁联合应用于替莫唑胺耐药 T98G 和替莫唑胺敏感 U87 细胞系的细胞毒性潜力。通过急性细胞活力、细胞死亡、线粒体改变和基于不同双周期方案的治疗方案模拟来评估治疗效果。
替莫唑胺纳米乳剂的平均粒径为 173.37 ± 0.86nm,zeta 电位为-6.53 ± 1.13mV。理化特性研究表明,替莫唑胺可能与纳米乳剂液滴结合,而不是被包裹在纳米结构中,从而实现药物的快速释放。替莫唑胺纳米乳剂与铁联合应用可降低胶质母细胞瘤细胞在急性和双周期方案检测中的活力。联合治疗方法还通过改变细胞的线粒体膜电位,逆转了 T98G 的替莫唑胺耐药表型,从而增加活性氧物质的产生,最终诱导细胞死亡。
总之,我们的研究结果表明,使用载有替莫唑胺的纳米乳剂联合铁是一种提高胶质母细胞瘤治疗效果的有效方法。