Department of Neurologic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
Int J Mol Sci. 2022 Jul 25;23(15):8171. doi: 10.3390/ijms23158171.
Glioblastoma is the most frequent and lethal primary central nervous system tumor in adults, accounting for around 15% of intracranial neoplasms and 40-50% of all primary malignant brain tumors, with an annual incidence of 3-6 cases per 100,000 population. Despite maximum treatment, patients only have a median survival time of 15 months. Metformin is a biguanide drug utilized as the first-line medication in treating type 2 diabetes. Recently, researchers have noticed that metformin can contribute to antineoplastic activity. The objective of this study is to investigate the mechanism of metformin as a potential adjuvant treatment drug in glioblastoma. Glioblastoma cell lines U87MG, LNZ308, and LN229 were treated with metformin, and several cellular functions and metabolic states were evaluated. First, the proliferation capability was investigated using the MTS assay and BrdU assay, while cell apoptosis was evaluated using the annexin V assay. Next, a wound-healing assay and mesenchymal biomarkers (N-cadherin, vimentin, and Twist) were used to detect the cell migration ability and epithelial-mesenchymal transition (EMT) status of tumor cells. Gene set enrichment analysis (GSEA) was applied to the transcriptome of the metformin-treated glioblastoma cell line. Then, DCFH-DA and MitoSOX Red dyes were used to quantify reactive oxygen species (ROS) in the cytosol and mitochondria. JC-1 dye and Western blotting analysis were used to evaluate mitochondrial membrane potential and biogenesis. In addition, the combinatory effect of temozolomide (TMZ) with metformin treatment was assessed by combination index analysis. Metformin could decrease cell viability, proliferation, and migration, increase cell apoptosis, and disrupt EMT in all three glioblastoma cell lines. The GSEA study highlighted increased ROS and hypoxia in the metformin-treated glioblastoma cells. Metformin increased ROS production, impaired mitochondrial membrane potential, and reduced mitochondrial biogenesis. The combined treatment of metformin and TMZ had U87 as synergistic, LNZ308 as antagonistic, and LN229 as additive. Metformin alone or combined with TMZ could suppress mitochondrial transcription factor A, Twist, and O-methylguanine-DNA methyltransferase (MGMT) proteins in TMZ-resistant LN229 cells. In conclusion, our study showed that metformin decreased metabolic activity, proliferation, migration, mitochondrial biogenesis, and mitochondrial membrane potential and increased apoptosis and ROS in some glioblastoma cells. The sensitivity of the TMZ-resistant glioblastoma cell line to metformin might be mediated via the suppression of mitochondrial biogenesis, EMT, and MGMT expression. Our work provides new insights into the choice of adjuvant agents in TMZ-resistant GBM therapy.
胶质母细胞瘤是成人中枢神经系统中最常见和最致命的原发性肿瘤,约占颅内肿瘤的 15%,所有原发性恶性脑肿瘤的 40-50%,发病率为每 10 万人每年 3-6 例。尽管采用了最大程度的治疗,患者的中位生存时间仅为 15 个月。二甲双胍是一种双胍类药物,用作治疗 2 型糖尿病的一线药物。最近,研究人员注意到二甲双胍可以发挥抗肿瘤活性。本研究旨在探讨二甲双胍作为胶质母细胞瘤潜在辅助治疗药物的作用机制。使用二甲双胍处理 U87MG、LNZ308 和 LN229 胶质母细胞瘤细胞系,并评估多种细胞功能和代谢状态。首先,通过 MTS 测定和 BrdU 测定评估增殖能力,通过 annexin V 测定评估细胞凋亡。接下来,通过划痕愈合试验和间充质标志物(N-钙黏蛋白、波形蛋白和 Twist)检测肿瘤细胞的迁移能力和上皮-间充质转化(EMT)状态。应用基因集富集分析(GSEA)分析二甲双胍处理的胶质母细胞瘤细胞系的转录组。然后,使用 DCFH-DA 和 MitoSOX Red 染料定量细胞质和线粒体中的活性氧(ROS)。使用 JC-1 染料和 Western blot 分析评估线粒体膜电位和生物发生。此外,通过组合指数分析评估替莫唑胺(TMZ)与二甲双胍联合治疗的协同作用。二甲双胍可降低三种胶质母细胞瘤细胞系的细胞活力、增殖和迁移,增加细胞凋亡并破坏 EMT。GSEA 研究强调了二甲双胍处理的胶质母细胞瘤细胞中 ROS 和缺氧增加。二甲双胍增加 ROS 产生,损害线粒体膜电位并减少线粒体生物发生。二甲双胍单独或与 TMZ 联合治疗对 U87 呈协同作用,对 LNZ308 呈拮抗作用,对 LN229 呈相加作用。二甲双胍单独或与 TMZ 联合治疗可抑制 TMZ 耐药 LN229 细胞中线粒体转录因子 A、Twist 和 O-甲基鸟嘌呤-DNA 甲基转移酶(MGMT)蛋白。总之,我们的研究表明,二甲双胍降低了一些胶质母细胞瘤细胞的代谢活性、增殖、迁移、线粒体生物发生和线粒体膜电位,并增加了细胞凋亡和 ROS。TMZ 耐药胶质母细胞瘤细胞对线粒体生物发生、EMT 和 MGMT 表达的抑制可能介导了对二甲双胍的敏感性。我们的工作为 TMZ 耐药 GBM 治疗中辅助药物的选择提供了新的见解。