Suppr超能文献

掺氮柠檬酸污泥衍生碳(NCSC)通过表面介导的电子转移机制有效地促进过一硫酸盐对全氟辛酸(PFOA)的去除。

N-doped citrate-sludge-derived carbon (NCSC) effectively promotes peroxymonosulfate activation for perfluorooctanoic acid (PFOA) removal with surface-mediated electron transfer mechanism.

机构信息

Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.

Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China.

出版信息

Ecotoxicol Environ Saf. 2023 Nov 1;266:115592. doi: 10.1016/j.ecoenv.2023.115592. Epub 2023 Oct 13.

Abstract

In traditional wastewater treatment methods, the removal of emerging contaminants including perfluorooctanoic acid (PFOA) can be challenging. To address this, biochar is commonly utilized as an activator for peroxymonosulphate (PMS) to effectively eliminate organic pollutants. Sewage sludge has shown potential as a biochar precursor, but its complex composition and variable iron content, as well as the low specific surface area of the product limit the practical use of iron-dominated sludge-derived catalysts. To overcome this limitation, N-doped citrate-sludge-derived carbon (NCSC) was synthesized, possessing a low iron content (0.29 at%) and a large specific surface area (315.31 m g). As a comparison, Fe-/N-doped citrate-sludge-derived carbon (Fe-NCSC) was prepared by introducing exogenous iron, resulting in a higher iron content (2.12 at%) but a significantly reduced specific surface area (73.87 m g). In performance evaluation, the NCSC/PMS system achieved impressive removal efficiency, effectively eliminating 99.8% of PFOA (at an initial concentration of 2 mg L) within 60 min, while Fe-NCSC/PMS only achieved 84.6%. The slightly lower reaction rate per specific surface area of NCSC/PMS proved that large specific surface area was NCSC's key advantage. The lower sensitivity of NCSC to pH and water substrates than FeNCSC suggested different activation mechanisms. Further analysis of reactive sites and species showed that the main oxidation mechanism of NCSC/PMS was forming the surface-bound PMS-NCSC complexes at the N sites, followed by PFOA donating electrons to the complexes to be oxidized, which was different from the Fe/N-dominated singlet oxygen mechanism of Fe-NSC/PMS. Furthermore, the reusability of the NCSC was demonstrated, with the removal rate decreasing to only 90.1% after four cycles and recovering to 94.8% after heated regeneration. In conclusion, this study provides a viable method for the elimination of emerging contaminants such as PFOA in water remediation.

摘要

在传统的废水处理方法中,去除全氟辛酸(PFOA)等新兴污染物可能具有挑战性。为了解决这个问题,通常将生物炭用作过一硫酸盐(PMS)的激活剂,以有效消除有机污染物。污水污泥已显示出作为生物炭前体的潜力,但由于其复杂的组成和可变的铁含量,以及产品的低比表面积,限制了以铁为主的污泥衍生催化剂的实际应用。为了克服这一限制,合成了氮掺杂柠檬酸污泥衍生碳(NCSC),其铁含量低(0.29 at%),比表面积大(315.31 m g)。相比之下,通过引入外源性铁制备了 Fe-/N 掺杂柠檬酸污泥衍生碳(Fe-NCSC),其铁含量较高(2.12 at%),但比表面积显著降低(73.87 m g)。在性能评估中,NCSC/PMS 体系表现出令人印象深刻的去除效率,可在 60 分钟内有效去除 99.8%的 PFOA(初始浓度为 2 mg L),而 Fe-NCSC/PMS 仅达到 84.6%。NCSC/PMS 的单位比表面积的反应速率略低,证明了大比表面积是 NCSC 的关键优势。与 Fe-NCSC 相比,NCSC 对 pH 和水基质的敏感性较低,表明存在不同的活化机制。进一步分析反应位点和物种表明,NCSC/PMS 的主要氧化机制是在 N 位形成表面结合的 PMS-NCSC 配合物,随后 PFOA 将电子供体给配合物以被氧化,这与 Fe-NCSC/PMS 的 Fe/N 主导的单线态氧机制不同。此外,还证明了 NCSC 的可重复使用性,在经过四个循环后,去除率仅下降到 90.1%,经过加热再生后恢复到 94.8%。总之,本研究为水修复中去除 PFOA 等新兴污染物提供了一种可行的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验