Suppr超能文献

基于 commute time distance 的图结构重构框架用于图分类。

Graph structure reforming framework enhanced by commute time distance for graph classification.

机构信息

School of Computer Science, Wuhan University, China; Changjiang Schinta Software Technology Co., LTD. Wuhan, China.

School of Computing and Information Systems, The University of Melbourne, Australia.

出版信息

Neural Netw. 2023 Nov;168:539-548. doi: 10.1016/j.neunet.2023.09.044. Epub 2023 Sep 26.

Abstract

As a graph data mining task, graph classification has high academic value and wide practical application. Among them, the graph neural network-based method is one of the mainstream methods. Most graph neural networks (GNNs) follow the message passing paradigm and can be called Message Passing Neural Networks (MPNNs), achieving good results in structural data-related tasks. However, it has also been reported that these methods suffer from over-squashing and limited expressive power. In recent years, many works have proposed different solutions to these problems separately, but none has yet considered these shortcomings in a comprehensive way. After considering these several aspects comprehensively, we identify two specific defects: information loss caused by local information aggregation, and an inability to capture higher-order structures. To solve these issues, we propose a plug-and-play framework based on Commute Time Distance (CTD), in which information is propagated in commute time distance neighborhoods. By considering both local and global graph connections, the commute time distance between two nodes is evaluated with reference to the path length and the number of paths in the whole graph. Moreover, the proposed framework CTD-MPNNs (Commute Time Distance-based Message Passing Neural Networks) can capture higher-order structural information by utilizing commute paths to enhance the expressive power of GNNs. Thus, our proposed framework can propagate and aggregate messages from defined important neighbors and model more powerful GNNs. We conduct extensive experiments using various real-world graph classification benchmarks. The experimental performance demonstrates the effectiveness of our framework. Codes are released on https://github.com/Haldate-Yu/CTD-MPNNs.

摘要

作为图数据挖掘任务,图分类具有很高的学术价值和广泛的实际应用。其中,基于图神经网络的方法是主流方法之一。大多数图神经网络(GNNs)遵循消息传递范例,可以称为消息传递神经网络(MPNNs),在与结构数据相关的任务中取得了很好的效果。然而,也有报道称这些方法存在过度压缩和表达能力有限的问题。近年来,许多工作分别提出了不同的解决方案来解决这些问题,但没有一个综合考虑了这些缺点。在全面考虑了这些方面之后,我们确定了两个具体的缺陷:局部信息聚合导致的信息丢失,以及无法捕获更高阶结构。为了解决这些问题,我们提出了一种基于交换时间距离(CTD)的即插即用框架,其中信息在交换时间距离邻域中传播。通过同时考虑局部和全局图连接,两个节点之间的交换时间距离参考整个图的路径长度和路径数量进行评估。此外,所提出的框架 CTD-MPNNs(基于交换时间距离的消息传递神经网络)可以通过利用交换路径来捕获高阶结构信息,从而增强 GNN 的表达能力。因此,我们提出的框架可以从定义的重要邻居传播和聚合消息,并构建更强大的 GNN。我们在各种真实世界的图分类基准上进行了广泛的实验。实验性能证明了我们框架的有效性。代码在 https://github.com/Haldate-Yu/CTD-MPNNs 上发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验