Suppr超能文献

基于图的多视图聚类的深度重建。

Deep graph reconstruction for multi-view clustering.

机构信息

School of Computer Science, Fudan University, Shanghai 200433, PR China.

School of Computer Science, School of Artificial Intelligence, Optics and Electronics (iOPEN), and the Key Laboratory of Intelligent Interaction and Applications (Ministry of Industry and Information Technology), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.

出版信息

Neural Netw. 2023 Nov;168:560-568. doi: 10.1016/j.neunet.2023.10.001. Epub 2023 Oct 6.

Abstract

Graph-based multi-view clustering methods have achieved impressive success by exploring a complemental or independent graph embedding with low-dimension among multiple views. The majority of them, however, are shallow models with limited ability to learn the nonlinear information in multi-view data. To this end, we propose a novel deep graph reconstruction (DGR) framework for multi-view clustering, which contains three modules. Specifically, a Multi-graph Fusion Module (MFM) is employed to obtain the consensus graph. Then node representation is learned by the Graph Embedding Network (GEN). To assign clusters directly, the Clustering Assignment Module (CAM) is devised to obtain the final low-dimensional graph embedding, which can serve as the indicator matrix. In addition, a simple and powerful loss function is designed in the proposed DGR. Extensive experiments on seven real-world datasets have been conducted to verify the superior clustering performance and efficiency of DGR compared with the state-of-the-art methods.

摘要

基于图的多视图聚类方法通过探索多个视图之间具有低维度的互补或独立图嵌入,取得了令人瞩目的成功。然而,它们中的大多数都是浅层模型,学习多视图数据中的非线性信息的能力有限。为此,我们提出了一种新的用于多视图聚类的深度图重构(DGR)框架,该框架包含三个模块。具体来说,采用多图融合模块(MFM)获得共识图。然后通过图嵌入网络(GEN)学习节点表示。为了直接分配聚类,设计了聚类分配模块(CAM)来获得最终的低维图嵌入,该嵌入可以作为指示矩阵。此外,在提出的 DGR 中设计了一个简单而强大的损失函数。在七个真实数据集上进行了广泛的实验,以验证与最先进的方法相比,DGR 在聚类性能和效率方面的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验