Suppr超能文献

基于逐个协变量剔除解路径的稀疏线性回归推断。

Inference for sparse linear regression based on the leave-one-covariate-out solution path.

作者信息

Cao Xiangyang, Gregory Karl, Wang Dewei

机构信息

216 LeConte College, 1523 Greene St, Columbia, SC 29201, USA.

出版信息

Commun Stat Theory Methods. 2023;52(18):6640-6657. doi: 10.1080/03610926.2022.2032171. Epub 2022 Feb 2.

Abstract

We propose a new measure of variable importance in high-dimensional regression based on the change in the LASSO solution path when one covariate is left out. The proposed procedure provides a novel way to calculate variable importance and conduct variable screening. In addition, our procedure allows for the construction of -values for testing whether each coe cient is equal to zero as well as for testing hypotheses involving multiple regression coefficients simultaneously; bootstrap techniques are used to construct the null distribution. For low-dimensional linear models, our method can achieve higher power than the -test. Extensive simulations are provided to show the effectiveness of our method. In the high-dimensional setting, our proposed solution path based test achieves greater power than some other recently developed high-dimensional inference methods. We extend our method to logistic regression and demonstrate in simulation that our leave-one-covariate-out solution path tests can provide accurate -values.

摘要

我们提出了一种基于在高维回归中剔除一个协变量时LASSO解路径的变化来衡量变量重要性的新方法。所提出的过程提供了一种计算变量重要性和进行变量筛选的新方法。此外,我们的过程允许构建用于检验每个系数是否等于零以及同时检验涉及多个回归系数的假设的p值;使用自助法技术构建零分布。对于低维线性模型,我们的方法比t检验具有更高的功效。提供了大量模拟以展示我们方法的有效性。在高维设置中,我们提出的基于解路径的检验比其他一些最近开发的高维推断方法具有更大的功效。我们将我们的方法扩展到逻辑回归,并在模拟中证明我们的留一协变量出解路径检验可以提供准确的p值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c859/10572792/3c01012c45bc/nihms-1862244-f0005.jpg

相似文献

1
2
A SIGNIFICANCE TEST FOR THE LASSO.套索(LASSO)的显著性检验
Ann Stat. 2014 Apr;42(2):413-468. doi: 10.1214/13-AOS1175.
3
Sparse Regression by Projection and Sparse Discriminant Analysis.基于投影的稀疏回归与稀疏判别分析
J Comput Graph Stat. 2015 Apr 1;24(2):416-438. doi: 10.1080/10618600.2014.907094.
5
Testing a single regression coefficient in high dimensional linear models.检验高维线性模型中的单个回归系数。
J Econom. 2016 Nov;195(1):154-168. doi: 10.1016/j.jeconom.2016.05.016. Epub 2016 Jun 15.

本文引用的文献

1
A SIGNIFICANCE TEST FOR THE LASSO.套索(LASSO)的显著性检验
Ann Stat. 2014 Apr;42(2):413-468. doi: 10.1214/13-AOS1175.
2
COVARIANCE ASSISTED SCREENING AND ESTIMATION.协方差辅助筛选与估计
Ann Stat. 2014 Nov 1;42(6):2202-2242. doi: 10.1214/14-AOS1243.
5
HIGH DIMENSIONAL VARIABLE SELECTION.高维变量选择
Ann Stat. 2009 Jan 1;37(5A):2178-2201. doi: 10.1214/08-aos646.
6

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验