Verrelst Jochem, Malenovský Zbyněk, Van der Tol Christiaan, Camps-Valls Gustau, Gastellu-Etchegorry Jean-Philippe, Lewis Philip, North Peter, Moreno Jose
Image Processing Laboratory (IPL), Parc Científic, Universitat de València, Paterna, València 46980, Spain.
Surveying and Spatial Sciences Group, School of Technology, Environments and Design, University of Tasmania, Private Bag 76, Hobart, TAS 7001, Australia.
Surv Geophys. 2019;40:589-629. doi: 10.1007/s10712-018-9478-y. Epub 2018 Jun 1.
An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.
随着即将发射的配备成像光谱辐射计的对地观测卫星任务的开展,前所未有的光谱数据流将很快可用。该数据流将为量化多种生化和结构植被属性带来大量机会。处理如此大的数据流需要可靠的反演技术,以实现生物物理变量的时空明确量化。为了为这个地球观测的新时代做好准备,本综述总结了在推断各种植被生物物理变量的实验成像光谱研究中应用的最新反演方法。确定的反演方法分为:(1)参数回归,包括植被指数、形状指数和光谱变换;(2)非参数回归,包括线性和非线性机器学习回归算法;(3)基于物理的方法,包括使用数值优化和查找表方法反演辐射传输模型(RTM);以及(4)混合回归方法,将RTM模拟与机器学习回归方法相结合。对于这些类别中的每一类,都给出了广泛应用的方法及其在绘制植被属性方面的应用概述。鉴于处理成像光谱数据,一个关键方面涉及处理光谱多重共线性的挑战。从业务处理的角度来看,提供稳健估计、反演不确定性和可接受的反演处理速度的能力是其他重要方面。给出了关于基于新一代光谱的生物物理变量业务生产处理链的建议。