Mora-Hernandez J Manuel, Alfonso Herrera Luis A, Garay-Rodriguez Luis F, Torres-Martínez Leticia M, Hernandez-Perez Irina
CONAHCYT - Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico.
Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico.
Heliyon. 2023 Oct 3;9(10):e20605. doi: 10.1016/j.heliyon.2023.e20605. eCollection 2023 Oct.
The photoelectrocatalytic reduction of CO (CORR) onto bismuth oxyhalides (BiOX, X = Cl, Br, I) was studied through physicochemical and photoelectrochemical measurements. The successful synthesis of the BiOX compounds was carried out through a solvothermal methodology and confirmed by XRD measurements. The morphology was analyzed by SEM; meanwhile, area and pore size were determined through BET area measurements. BiOI and BiOCl present a lower particle size (3.15 and 2.71 μm, respectively); however, the sponge-like morphology presented by BiOI results in an increase in the BET area, which can enhance the catalytic activity of this semiconductor. In addition, DRS measurements allowed us to determine bandgap values of 1.9, 2.4, and 3.6 eV for BiOI, BiOBr, and BiOCl, respectively. Such results predict better visible light harvesting for BiOI. Photoelectrochemical measurements indicated that BiOX shows p-type semiconductor behavior, being the holes the majority charge carriers, making BiOI the most active material to carry out photoelectrocatalytic CORR. In the second stage, three different composites, BiOI-Pd, BiOI-Cu, and BiOI-PdCu, (BiOI-M; M = Pd, Cu, PdCu), were fabricated to study the influence of active metal nanoparticles (NP's) in the BiOI CORR activity. XRD measurements confirmed the interaction between BiOI and the metallic NP's, the three composites overpassed by 20% the BET area of pristine BiOI. Photoelectrochemical measurements indicate that all BiOI-metal composites are suitable materials to perform CO reduction in neutral media efficiently; however, the BiOI-PdCu composites surpassed the faradaic current of BiOI-Pd and BiOI-Cu at 0.85 V vs. RHE (3.15, 2.06 and 2.15 mA cm, respectively). BiOI-PdCu presented photoactivity to carry out the CO reduction evolving formic acid and acetic acid as the main products under visible-light irradiation.
通过物理化学和光电化学测量研究了卤氧化铋(BiOX,X = Cl、Br、I)上CO的光电催化还原反应(CORR)。采用溶剂热法成功合成了BiOX化合物,并通过XRD测量进行了确认。通过SEM分析了其形貌;同时,通过BET面积测量确定了面积和孔径。BiOI和BiOCl的粒径较小(分别为3.15和2.71μm);然而,BiOI呈现的海绵状形貌导致BET面积增加,这可以提高这种半导体的催化活性。此外,通过DRS测量分别确定了BiOI、BiOBr和BiOCl的带隙值为1.9、2.4和3.6 eV。这些结果预示BiOI对可见光的捕获效果更好。光电化学测量表明,BiOX呈现p型半导体行为,空穴是多数载流子,这使得BiOI成为进行光电催化CORR最活跃的材料。在第二阶段,制备了三种不同的复合材料BiOI-Pd、BiOI-Cu和BiOI-PdCu(BiOI-M;M = Pd、Cu、PdCu),以研究活性金属纳米颗粒(NP)对BiOI CORR活性的影响。XRD测量证实了BiOI与金属NP之间的相互作用,这三种复合材料的BET面积比原始BiOI的BET面积高出20%。光电化学测量表明,所有BiOI-金属复合材料都是在中性介质中高效进行CO还原的合适材料;然而,在相对于可逆氢电极(RHE)为0.85 V时,BiOI-PdCu复合材料的法拉第电流超过了BiOI-Pd和BiOI-Cu的法拉第电流(分别为3.15、2.06和2.15 mA cm)。BiOI-PdCu在可见光照射下具有光活性,能够进行CO还原反应,主要产物为甲酸和乙酸。