Department of Psychology, University of Konstanz, Konstanz, Germany.
Br J Math Stat Psychol. 2024 Feb;77(1):1-30. doi: 10.1111/bmsp.12324. Epub 2023 Oct 16.
We didactically derive a correlated traits correlated (methods - 1) [CTC(M - 1)] multitrait-multimethod (MTMM) model for dyadic round-robin data augmented by self-reports. The model is an extension of the CTC(M - 1) model for cross-classified data and can handle dependencies between raters and targets by including reciprocity covariance parameters that are inherent in augmented round-robin designs. It can be specified as a traditional structural equation model. We present the variance decomposition as well as consistency and reliability coefficients. Moreover, we explain how to evaluate fit of a CTC(M - 1) model for augmented round-robin data. In a simulation study, we explore the properties of the full information maximum likelihood estimation of the model. Model (mis)fit can be quite accurately detected with the test of not close fit and dynamic root mean square errors of approximation. Even with few small round-robin groups, relative parameter estimation bias and coverage rates are satisfactory, but several larger round-robin groups are needed to minimize relative parameter estimation inaccuracy. Further, neglecting the reciprocity covariance-structure of the augmented round-robin data does not severely bias the remaining parameter estimates. All analyses (including data, R scripts, and results) and the simulation study are provided in the Supporting Information. Implications and limitations are discussed.
我们从教学的角度推导出了一个相关性状相关(方法-1)[CTC(M-1)]双体循环自报告扩充的多特质多方法(MTMM)模型。该模型是交叉分类数据的 CTC(M-1)模型的扩展,通过包含增强循环设计固有的互惠协方差参数,可以处理评分者和目标之间的依赖性。它可以指定为传统的结构方程模型。我们提出了方差分解以及一致性和可靠性系数。此外,我们解释了如何评估增强循环数据的 CTC(M-1)模型的拟合情况。在一项模拟研究中,我们探讨了该模型的完全信息极大似然估计的性质。可以通过不接近拟合检验和近似动态均方根误差准确地检测到模型(不合适)拟合。即使只有几个小的循环组,相对参数估计偏差和覆盖率也令人满意,但需要几个较大的循环组来最小化相对参数估计的不准确性。此外,忽略增强循环数据的互惠协方差结构不会严重偏置剩余的参数估计。所有分析(包括数据、R 脚本和结果)和模拟研究都在支持信息中提供。讨论了其影响和局限性。