Suppr超能文献

分解用于评估创造力的发散性思维任务的评分反应中的真分数方差:多特质-多方法分析

Decomposing the True Score Variance in Rated Responses to Divergent Thinking-Tasks for Assessing Creativity: A Multitrait-Multimethod Analysis.

作者信息

Jendryczko David

机构信息

Department for Methods for Intensive Data in Psychology, University of Konstanz, 78464 Konstanz, Germany.

出版信息

J Intell. 2024 Sep 27;12(10):95. doi: 10.3390/jintelligence12100095.

Abstract

It is shown how the Correlated Traits Correlated Methods Minus One (CTC(M - 1)) Multitrait-Multimethod model for cross-classified data can be modified and applied to divergent thinking (DT)-task responses scored for miscellaneous aspects of creative quality by several raters. In contrast to previous Confirmatory Factor Analysis approaches to analyzing DT-tasks, this model explicitly takes the cross-classified data structure resulting from the employment of raters into account and decomposes the true score variance into target-specific, DT-task object-specific, rater-specific, and rater-target interaction-specific components. This enables the computation of meaningful measurement error-free relative variance-parameters such as trait-consistency, object-method specificity, rater specificity, rater-target interaction specificity, and model-implied intra-class correlations. In the empirical application with alternate uses tasks as DT-measures, the model is estimated using Bayesian statistics. The results are compared to the results yielded with a simplified version of the model, once estimated with Bayesian statistics and once estimated with the maximum likelihood method. The results show high trait-correlations and low consistency across DT-measures which indicates more heterogeneity across the DT-measurement instruments than across different creativity aspects. Substantive deliberations and further modifications, extensions, useful applications, and limitations of the model are discussed.

摘要

展示了如何对交叉分类数据的相关特质相关方法减一(CTC(M - 1))多特质 - 多方法模型进行修改,并将其应用于由多个评分者针对创造性质量的多个方面进行评分的发散性思维(DT)任务反应。与先前用于分析DT任务的验证性因素分析方法不同,该模型明确考虑了由于使用评分者而产生的交叉分类数据结构,并将真分数方差分解为目标特定、DT任务对象特定、评分者特定以及评分者 - 目标交互特定的成分。这使得能够计算有意义的无测量误差的相对方差参数,如特质一致性、对象 - 方法特异性、评分者特异性、评分者 - 目标交互特异性以及模型隐含的组内相关性。在以替代用途任务作为DT测量的实证应用中,使用贝叶斯统计对模型进行估计。将结果与该模型简化版本产生的结果进行比较,该简化版本一次用贝叶斯统计估计,一次用最大似然法估计。结果显示DT测量之间具有高特质相关性和低一致性,这表明DT测量工具之间的异质性比不同创造性方面之间的异质性更大。讨论了该模型的实质性思考以及进一步的修改、扩展、有用的应用和局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验